已知3阶矩阵A的特征值为-1,1,2,设B=A^2+2A-E的特征值为?为什么相应特征值为:x^2+2x-1,这个新矩阵并不是对角线上元素相加,其它元素也改变了值?为什么还可以这样算?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 19:34:00
已知3阶矩阵A的特征值为-1,1,2,设B=A^2+2A-E的特征值为?为什么相应特征值为:x^2+2x-1,这个新矩阵并不是对角线上元素相加,其它元素也改变了值?为什么还可以这样算?
xSn@~A]7+.( r$yHPU !_7?-ԴAqUB IEKj;/k Nb•`3:YHwOýЧv%D!pI9eWQ[-O:U~a{=>3ֽGjc훐 1qwAmJ8#P0N:2[F崻&FtC fV^$(%?"0ezq`R?-"3|0Rqٻ5)Aq _ihy;+5 (ns]߂أBw*Ԅm0DSOXMXN6 &~ %ío@y爨aB >|mY:[dl$F_a;zю.άhKԔDA(iVm[ȓSv¾Ԋsu>ԡa9mG, 33Rubxide!<-~_8

已知3阶矩阵A的特征值为-1,1,2,设B=A^2+2A-E的特征值为?为什么相应特征值为:x^2+2x-1,这个新矩阵并不是对角线上元素相加,其它元素也改变了值?为什么还可以这样算?
已知3阶矩阵A的特征值为-1,1,2,设B=A^2+2A-E的特征值为?
为什么相应特征值为:x^2+2x-1,这个新矩阵并不是对角线上元素相加,其它元素也改变了值?为什么还可以这样算?

已知3阶矩阵A的特征值为-1,1,2,设B=A^2+2A-E的特征值为?为什么相应特征值为:x^2+2x-1,这个新矩阵并不是对角线上元素相加,其它元素也改变了值?为什么还可以这样算?
-2,2,5,把原来的特征值带入方程即可.
第一个理解,设v是A的对应特征值a的特征向量,那么Bv=(a^2+2a+-1)v,v也是B的对应于a^2+2a+-1的特征向量.从而因为A有个特征值,对应三个特征向量v1,v2,v3,所以我们也找到了B的三个特征向量,对应的特征值可以算出.
第二个理解,从矩阵看,A可以对角化,即存在可逆阵P使得,PAP^{-1}为对角阵,对角线元素为-1,1,2,从而你可以计算PBP^{-1}也是个对角阵,(注意,PA^2 P^{-1}=PAP^{-1}PAP^{-1},简单)对角线元素可以轻易 算出.
这两个解释本质是一样的