已知cosB=cosαsinA,cosC=sinαsinA,求证sinAsinA+sinBsinB+sinCsinC=2?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 00:36:38
已知cosB=cosαsinA,cosC=sinαsinA,求证sinAsinA+sinBsinB+sinCsinC=2?
x){}KlĹřy:@->b}# @ A g5I*ҧYv6u) Own~6m Ovt*J↺ !LSp Vib&D~m# tt0=w @LsԀiCi"`&~'m<݌/8m @Qz](

已知cosB=cosαsinA,cosC=sinαsinA,求证sinAsinA+sinBsinB+sinCsinC=2?
已知cosB=cosαsinA,cosC=sinαsinA,求证sinAsinA+sinBsinB+sinCsinC=2?

已知cosB=cosαsinA,cosC=sinαsinA,求证sinAsinA+sinBsinB+sinCsinC=2?
cosB=cosαsinA 平方一下
cos^2B=cos^2asin^aA
1-sin^2B=cos^2asin^aA 1
cosC=sinαsinA 平方一下
cos^2C=sin^2asin^2A
1-sin^2C=sin^2asin^2A 2
1式+2式得
2-sin^2B-sin^2C=cos^2asin^2A+sin^2asin^2A=sin^2A(sin^2a+cos^2a)=sin^2A
所以
sin^2A+sin^2B+sin^2C=2
即sinAsinA+sinBsinB+sinCsinC=2