在△ABC中,求证sin(A+B)/(sinA+sinB)+sin(B+C)/(sinB+sinC)+sin(C+A)/(sinC+sinA)>=3/2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 14:50:05
在△ABC中,求证sin(A+B)/(sinA+sinB)+sin(B+C)/(sinB+sinC)+sin(C+A)/(sinC+sinA)>=3/2
在△ABC中,求证sin(A+B)/(sinA+sinB)+sin(B+C)/(sinB+sinC)+sin(C+A)/(sinC+sinA)>=3/2
在△ABC中,求证sin(A+B)/(sinA+sinB)+sin(B+C)/(sinB+sinC)+sin(C+A)/(sinC+sinA)>=3/2
证明:
先用正弦定理.将角度化成边:
sin(A+B)/(sinA+sinB)+sin(B+C)/(sinB+sinC)+sin(C+A)/(sinC+sinA)
=sinc/(sinA+sinB)+sina/(sinB+sinC)+sinb/(sinC+sinA)
=1/(sina/sinc)+(sinb/sinc)+1/(sinb/sina)+(sinc/sina)+1/(sinc/sinb)+(sinc/sinb)
=c/(a+b)+a/(b+c)+b/(a+c)
因此只要证明:
c/(a+b)+a/(b+c)+b/(a+c)>=3/2即可!
要证a/(b+c)+b/(a+c)+c/(a+b) >=3/2
只要证2[a(a+c)(a+b)+b(b+c)(a+b)+c(a+c)(b+c)]-3(a+b)(a+c)(b+c)>=0
故2[a(a+c)(a+b)+b(b+c)(a+b)+c(a+c)(b+c)]-3(a+b)(a+c)(b+c)=2(a^3+abc+a^2b+a^2c+b^3+ab^2+cb^2+abc+c^3+abc+c^2a+c^2b)-3(a^2b+a^2c+abc+ac^2+b^2a+abc+b^2c+bc^2)=2a^3+2b^3+2c^3-a^2b-a^2c-ab^2-cb^2-ac^2-bc^2=a^2(a-b)+a^2(a-c)+b^2(b-c)+b^2(b-a)+c^2(c-a)+c^2(c-b)=(a-b)^2(a+b)+(a-c)^2(a+c)+(b-c)^2(b+c)
由设a,b,c均为正数
所以(a-b)^2(a+b)+(a-c)^2(a+c)+(b-c)^2(b+c)>=0
综上可知a/(b+c)+b/(a+c)+c/(a+b) >=3/2
祝你新年快乐,全家幸福~