已知函数f(x)=3^x-2^-x/3^x+2^-x (1)判断f(x)的单调性并加以证明.(2)f(x)的值域已知函数f(x)=3^x-2^-x/3^x+2^-x (1)判断f(x)的单调性并加以证明.(2)f(x)的值域

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 13:26:35
已知函数f(x)=3^x-2^-x/3^x+2^-x (1)判断f(x)的单调性并加以证明.(2)f(x)的值域已知函数f(x)=3^x-2^-x/3^x+2^-x (1)判断f(x)的单调性并加以证明.(2)f(x)的值域
xSN@۴K5T#H -x1^D3RO-4Jf7ofN燙?ͷ7(mT"UlLh0>wz0no]E >?)hF}=U={M ]?\Gsv۞(hEAE-k/:Fulʠ+E\AbRh7J@hI`3s MdNnK 1>DS&Ed_x SFu _B-ĨJ\>Mf6ȊQ&i]wZ}(!d^%d!ZJܤc׷w2U

已知函数f(x)=3^x-2^-x/3^x+2^-x (1)判断f(x)的单调性并加以证明.(2)f(x)的值域已知函数f(x)=3^x-2^-x/3^x+2^-x (1)判断f(x)的单调性并加以证明.(2)f(x)的值域
已知函数f(x)=3^x-2^-x/3^x+2^-x (1)判断f(x)的单调性并加以证明.(2)f(x)的值域
已知函数f(x)=3^x-2^-x/3^x+2^-x (1)判断f(x)的单调性并加以证明.(2)f(x)的值域

已知函数f(x)=3^x-2^-x/3^x+2^-x (1)判断f(x)的单调性并加以证明.(2)f(x)的值域已知函数f(x)=3^x-2^-x/3^x+2^-x (1)判断f(x)的单调性并加以证明.(2)f(x)的值域
(判断的过程:上下同除以3^x,则f(x)=(1-6^-x)/(1+6^-x)=(2-1-6^-x)/(1+6^-x)=[2/(1+6^-x)]-1,x增,则6^-x减,1+6^-x减,则函数为增函数)
(1) f(x)为增函数.
证明:f(x)=(1-6^-x)/(1+6^-x)=(2-1-6^-x)/(1+6^-x)=[2/(1+6^-x)]-1
x定义域为R,设有x1>x2
则f(x1)-f(x2)=[2/(1+6^-x1)]-1-[2/(1+6^-x2)]+1
=2/(1+6^-x1)-2/(1+6^-x2)
=2(1+6^-x2-1-6^-x1)/[(1+6^-x1)(1+6^-x2)]
=2(6^-x2-6^-x1)/[(1+6^-x1)(1+6^-x2)]
x1>x2,则6^-x2-6^-x1>0,又[(1+6^-x1)(1+6^-x2)]>0
f(x1)-f(x2)>0,即f(x1)> f(x2)
所以f(x)为增函数
(2) f(x)=[2/(1+6^-x)]-1
6^-x>0 1+6^-x>1 f(x)