数列{an}和{bn}满足a1=1 a2=2 an>0 bn=根号an*an+1且{bn}是以公比为q的等比数列(1)证明an+2=anq^2 (2)Cn=a2n-1+2a2n证明{Cn}是等比数列
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 12:54:47
xRN@.[ZSe3ȐL?`Buِ`IMO.ܩh|?ha/xLfΝ9N,.lJϏXuI2 u'VzOޤIŤbzb,G˻C˼x#TIHq j/H#-܈w
NvMoϜ~Pjذ-%L\Z[Lp! cϲKS
>^k,{Iب0RTK.~ϙNټwf>U888XxK `IEg=N{T5Ҷ֎E?
lrG:^?JniA O,NqsׅTjo4*Z
数列{an}和{bn}满足a1=1 a2=2 an>0 bn=根号an*an+1且{bn}是以公比为q的等比数列(1)证明an+2=anq^2 (2)Cn=a2n-1+2a2n证明{Cn}是等比数列
数列{an}和{bn}满足a1=1 a2=2 an>0 bn=根号an*an+1且{bn}是以公比为q的等比数列(1)证明an+2=anq^2 (2)Cn=a2n-1+2a2n证明{Cn}是等比数列
数列{an}和{bn}满足a1=1 a2=2 an>0 bn=根号an*an+1且{bn}是以公比为q的等比数列(1)证明an+2=anq^2 (2)Cn=a2n-1+2a2n证明{Cn}是等比数列
证明:(1)∵数列{a[n]}和{b[n]}满足a[1]=1,a[2]=2,a[n]>0,bn=√(a[n]*a[n+1]),且{b[n]}是以公比为q的等比数列
∴b[1]=√(a[1]*a[2])=√2
b[n]=√2*q^(n-1)=√(a[n]*a[n+1]) 【1】
b[n+1]=√2*q^n=√(a[n+1]*a[n+2]) 【2】
【2】/【1】,得:q=√(a[n+2]/a[n])
∴a[n+2]=a[n]q^2 【3】
(2)∵C[n]=a[2n-1]+2a[2n]
∴由(1)的结论【3】,得:
C[n+1]=a[2n+1]+2a[2n+2]
=q^2(a[2n-1]+2a[2n])
∴C[n+1]/C[n]=q^2
∴{C[n]}是等比数列
两个数列{an}和{bn}满足bn=a1+2a2+...+nan/1+2+...+n,求证:若{bn}为等差数列,则数列{an}也是等差数列?能看懂的
数列an满足a1+a2+a3+...+an=n^2,若bn=1/an(an+1),求bn的和sn
设各项均为正数的数列{an}和{bn}满足:an,bn,an+1成等差数列,bn,an+1,bn+1等比数列且a1=1,b1=2,a2=3求通项an,bn
设各项均为正数的数列{an}和{bn}满足:an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列,且a1=1,b1=2,a2=3,求通项an,bn
已知数列{an}和{bn}满足关系:bn=(a1+a2+a3+…+an)/n,(n∈N*).若{bn}是等差数列,求证{an}为等差数列
数列{an}{bn}满足bn=a1+2a2+3a3+…+nan/(1+2+3+…+n),若数列{an}为等差数列,求证;{bn}为等差数列.
设数列{an}和{bn}满足:a1=b1=6,a2=b2=4,a3=b3=3,数列{an+1-an}是等差数列···设数列{an}和{bn}满足:a1=b1=6,a2=b2=4,a3=b3=3,数列{an+1-an}是等差数列,Sn为数列{bn}的前n项和,且Sn=2n-bn+10,(1)分别求{an}{bn}的通项公式(2
设各项均为正数的数列{an}和{bn}满足5^[an ],5^[bn] ,5^[a(n+1)] .设各项均为正数的数列{an}和{bn}满足5^[an ],5^[bn] ,5^[a(n+1)] 成等比数列,lg[bn],lg[a(n+1)],lg[bn+1]成等差数列,且a1=1,b1=2,a2=3,求通项an、bn.
若数列an满足an=4n-1 又有数列bn满足bk=1/k(a1+a2+……+ak)求数列{bn}得前n项和Sn
数列{an}中,a1=-60,an+1=an+3,若数列{bn}满足bn=|an|,求数列{bn}前30项和
数列{an} {bn}满足:a1=0 a2=1 a(n+2)=[an+a(n+1)]/2 bn=a(n+1)-an 求证 bn是等比数列和 bn的通向公式
已知数列an满足a1+2a2+2^2a3+...+2^n-1an=n/2(1).求数列an的通项公式.(2)设bn=(2n-1)an,求数列bn的...已知数列an满足a1+2a2+2^2a3+...+2^n-1an=n/2(1).求数列an的通项公式.(2)设bn=(2n-1)an,求数列bn的前n项和sn
已知数列an满足an=31-6n,数列bn满足bn=(a1+a2+...+an)/n,求数列bn的前20项之和.
正数列{an}和{bn}满足对任意自然数n,an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列1)证明:数列{√bn}成等差数列(2)若a1=1,b1=2,a2=3,求数列{an},{bn}的通项公式(3)在(2)的前提下求{1/an}的通项公
数列an满足,a1=1/4,a2=3/4,an+1=2an-an-1(n≥2,n属于N*),数列bn满足b1
数列an中,a1=1,a2=2数列bn满足an+1+(-1)n次an,a属于N* (1)若an等差数列...数列an中,a1=1,a2=2数列bn满足an+1+(-1)n次an,a属于N*(1)若an等差数列求bn的前6项和S6(2)若bn是公差为2的等差数列求数列a
设数列an,bn分别满足a1*a2*a3...*an=1*2*3*4...*n,b1+b2+b3+...bn=an^2,n属于N+a1*a2*a3...*an=1*2*3*4...*n,b1+b2+b3+...bn=an^2,n属于N+1)求数列an和bn的通项公式
数列{an}满足a1=1,a2=2,2an+1=an+an+2,若bn=1/anan+1,则数列{bn}的前五项和等于