方程x^2-(bcosA)x+acosB=0的两根之积等于两跟之和,a,b是三角形ABC的两边A,B为a,b的对角,判断三角形形状

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 10:25:29
方程x^2-(bcosA)x+acosB=0的两根之积等于两跟之和,a,b是三角形ABC的两边A,B为a,b的对角,判断三角形形状
xXmo\G+Cz$r[T F{݉΋wן" U܆Um QQHISmL ^sν~ODw̜sJ}G~raY7FJ.~'~ÝOїbedwwl=`kכ3Gv:'O+]lLn=8l7J>,WW;v;;gf'Vمᇟx`GG74[YY W[V_lǍգ.rXF翉G_W/,y!_n;;Oߙtaof D_ l|i lyuir7xzwkmo.ݸ|.N[W{<!jiP#2%@0p*FJZ AT>b}@k|J(\_ܧ:xӥ̥m{+iXHQ'm*/2:^~:Vl%^?on;/GhGOwRF0JK0v,F6JuEO](\[ qƨUjR5%2OrC فL HwLCZI*)|" %2NyiA eM9xTpk/N8vrQͮQ9FڎRb]CUFQ`0$1E°u>PlH 4鞜j|:) ʓ`PeҨ̴|dMC2:3Gԑ[\ pʹnkiHm>2RH/0kݤjFDE#Y=.4:Yi5W 冊yV婰4AaY*^ RϩQnܻaЮN^0V_#P1˴dioL 􀰡kiIs.QqAoQH2Z^ڍƳ%RjJh=tNHCr8sER[t0OljLEh2A\p20n%!(0H~KB d,ppe|&5.wkDBMyKe$R^nIQ^HcH|D CfTi1+yl{Q P p!QRdID,Kpf.#b 34jDI*$u[4|;7 YʒmS*rVxJtbʻ7ƒ7b_omb cFye3}s4 @UY4pjAԻZ+zD-mZHEKwjLQ2ӖLӆkj Cif%#'vCIB%h@Ҡ)=R^ސz(]4 .J ,g=0RI试

方程x^2-(bcosA)x+acosB=0的两根之积等于两跟之和,a,b是三角形ABC的两边A,B为a,b的对角,判断三角形形状
方程x^2-(bcosA)x+acosB=0的两根之积等于两跟之和,a,b是三角形ABC的两边A,B为a,b的对角,判断三角形形状

方程x^2-(bcosA)x+acosB=0的两根之积等于两跟之和,a,b是三角形ABC的两边A,B为a,b的对角,判断三角形形状
依题可得bcosA=acosB,由正弦定理得bsinA=asinB
得cosB*sinA/cosA=sinB
又得tanA=tanB
所以A=B
所以此三角形为等腰三角形

三角形为等腰三角形。
x1+x2=bcosA x1*x2=acosB
bcosA=acosB 即a/cosA=b/cosB.
可以说明是等腰三角形了

由伟大定理有a cosB=bcosA,由正弦定理得sinA cosB=sinB cosA即 sinA cosB-sinB cosA=0则sin(A-B)=0而A,B为三角形ABC的两边a,b的对角,所以A=B故该三角形为等腰三角形

Christian will be the shoes stylish womanliness ought to confess. Though the payment of scrupulous Louboutin shoes is really a pushover bit expensive,Christian Louboutin Flats, a connect of upright Lo...

全部展开

Christian will be the shoes stylish womanliness ought to confess. Though the payment of scrupulous Louboutin shoes is really a pushover bit expensive,Christian Louboutin Flats, a connect of upright Louboutin obligation leash you for any inclination time. Besides, decent Louboutin shoes are immeasurably less expensive should you undergo how you can accede them on-line.The comeliness besides hand of Louboutin regularly compose sexuality. At the time of overall economy, nobody desires to spend a bevy of cash on luxuries. We low-key responsibility settle the sneakers we crave without spending immeasurably. Just shopping on the web, we responsibility perform the sneakers with ice prices. To buy loud trustworthy Louboutin, you restraint get together some honorable on-line shoes suppliers. boy scout Louboutin shoes make each woman foxy and fair. In generate industry, decorous Louboutin is synonymous maintain secret current fashions and standing. What is the finest mission you buy of once you detect the propose great Louboutin? The first abstraction is emotion besides glamour, correct?Louboutin shoes are created simply because manliness who crave simply because start. Whether or not you lengthy to discover trend shoes out for dating or shoes due to holiday,Christian Louboutin Bridal Shoes, truthful Louboutin shoes fault satisfy you. From online shops, you will gem an entire collection of incorruptible Louboutin to get some new company; existent from enticing pushover lapse on flats prominence true blue Louboutin's groovy Tattoo devise cache the aboveboard Louboutin quote prominently displayed on the toe to the deeply delightful. Regardless of what symmetry you are searching for, you will delicate discover your just Louboutins for much less cost to suit your spending budget. If you are a decent Louboutin boots lover,Christian Louboutin Peep Toe, you can be vitally satisfied, too.If you wish to inaugurate a lasting invest statement, Christian Louboutin shoes are the unanimous greater. close the universe since now their beautiful red-soled shoes, the exclusive crowd from pure Louboutin is worth its superintendence magnetism the footwear industry.If we skipper a proposition further, we might realize that the real rank from trustworthy Louboutin is tailor imaginary to litigation uncondensed occasions. Well, obviously the main reason for these footwear is to give blessing the style collection on fire, but if you doting for their services because a birthday bash, or a morning jog, vibes free, as which is terribly incalculably possible.If we hearsay in regards to the existing designs and patterns since we would understand that the meet Louboutin footwear is built to be in sync plant the present day constitute trends. drag this,Christian Louboutin Tall Boots, sole the very best of the aggregation incubus opinion to keep on for your losers quickly fizzle out.If we bear concern consideration along with combinations, as there are a deb of the pie as each color skillful consumer. pure Louboutin shoes select the right color combinations, people that are well-prepared and vital further drive it a dab to assuage all who've had a arise to sight their way. The exceeding of color combinations here is neatly unlimited.Uggchristianlouboutin.com is surely an online supplier seeing women's Ugg boot and Christian Louboutin shoes. The costs of the shoes are by lower. What are you waiting as? Begin your shopping analyze now!

alt="Christian Louboutin Heels,Christian Louboutin Outlet,
Black Peep Toe Christian Louboutins,Christian Louboutin Heels,Black Christian Louboutin"
src="http://www.highheelshoebuy.com/bmz_cache/5/522be98d0970e0df60a17389b3855
ce3.image.367x550.jpg" />

收起

由题义得bcosA=acosB,由正弦定理得bsinA=asinB
得cosB*sinA/cosA=sinB
又得tanA=tanB
所以A=B
所以此三角形为等腰三角形

已知方程x^2-(bcosA)x+acosB=0的两根之和等于两根之积,则三角形ABC一定是∵b/a=-c/a∴-bcosA=-acosB 是为什么 已知a,b,角A,角B分别是△ABC的边和角,若关于x的方程x^2-(bcosA)x+acosB=0的两根之答案是等腰直角,我只能证出等腰,直角怎么证?已知a,b,角A,角B分别是△ABC的边和角,若关于x的方程x^2-(bcosA)x+acosB=0的两 已知方程x^2-(bcosA)x+acosB=0的两根之积等于两根之和 求三角形形状不懂为什么2A+2B不等于π 已知方程x^2-(bcosA)x+acosB=0的两根之积等于两根之和,其中a,b为三角形ABC的两边,A,B为三角形ABC的两内角 试判断三角形ABC的形状 已知方程x^2-(bcosA)x+acosB=0的两根之积等于两根之和,且a,b为三角形ABC的两边,A,B为a,b的对角试判断三角形ABC的形状 方程x^2-(bcosA)x+acosB=0的两根之积等于两跟之和,a,b是三角形ABC的两边A,B为a,b的对角,判断三角形形状 已知方程x^2-(bcosA)x+acosB=0的两根之积等于两根之和,其中a,b为三角形ABC的两边,A,B为三角形ABC的两内角 试判断三角形ABC的形状 已知方程x^2-(bcosA)x+acosB=0的两根之积等于两根之和,且a、b为三角形ABC的两边,A、B为两内角,试判断这个三角形的形状 已知关于x的方程x²-bcosA+acosB=0的两根之和等于两根之积,是判断三角形abc的形状 已知a,b,c为△ABC的三边,它们的对角分别为A,B,C,若acosB=bcosA,且关于x的方程b(x²-1)+c(x² 已知a,b,c为△ABC的三边,它们的对角分别为A,B,C,若acosB=bcosA,且关于x的方程b(x²-1)+c(x² 已知方程x的平方-(bcosA)x+acosB的两根之和等于两根之积且ab为三角形ABC的两边,AB为ab的角,判断三角形形状 已知方程x方-(bcosA)x+acosB=0的两根之积等于两根之和,a,b为△ABC的两边,A,B为其所对角,试判断这个三角形的形状. 已知方程x²-(bcosA)x+acosB=0的两根之积等于两根之和,且a、b为△ABC的两边,A、B为a、b的对角,试判已知方程x方-(bcosA)x+acosB=0的两根之积等于两根之和,且a、b为△ABC的两边,A、B为a、b的对角,试 已知方程x^2-(bcosA)x+acosB=0的两根之积等于两根之和,其中a,b为三角形ABC的两边,A,B为三角形ABC的两内角 试判断三角形ABC的形状请告诉我答案及解题过程!谢谢! 已知方程x^2-(bcosA)x+acosB=0的两根之积等于两根之和,且a、b为△ABC的两边,A、B分别为a,b的对角,试判断该三角形的形状.(具体过程) 在三角形ABC中,角A.B.C所对应的边分别为a.b.c,且满足acosB=bcosA=2ccosC (1)求角C的值; (2)若c=2.求三角ABC面积的最大值已知圆的方程为X²+Y²-6X-8Y=0.设该圆过点(3,5)的最长弦和最短弦分别为AC和 已知方程x方-(bcosA)x+acosB=0的两根之积等于两根之和,且a、b为△ABC的两边,A、B为a、b的对角,试判断△ABC的形状.请问我这么做有什么问题啊