不论ab为何实数,a的平方加b的平方减2a减4b加8的值1选项:总是正数,2选项:总是负数,3选项:可以是零

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 15:42:29
不论ab为何实数,a的平方加b的平方减2a减4b加8的值1选项:总是正数,2选项:总是负数,3选项:可以是零
xTMN@,۔Y=  4Q5. FШ Qt ] ~1%шƅ]Lg׾7Ӗ3/3LymamǦn{/Io\ `*e{WSv\ku~Ob5G*L 6I6P5(U"UV1s@Rx`]ҐΧvO""5NoQePJIJ ' e;gX ldM^D05&BeDvk[A20D' lZ,jDA`Ff WfGlpNӉÜz8|-fv_<(+ 7g6e ښ|>VCQ?φs~'K4;

不论ab为何实数,a的平方加b的平方减2a减4b加8的值1选项:总是正数,2选项:总是负数,3选项:可以是零
不论ab为何实数,a的平方加b的平方减2a减4b加8的值
1选项:总是正数,2选项:总是负数,3选项:可以是零

不论ab为何实数,a的平方加b的平方减2a减4b加8的值1选项:总是正数,2选项:总是负数,3选项:可以是零
总是正数
a^2+b^2-2a-4b+8
=a^2-2a+1+b^2-4b+4+3 (配方)
=(a-1)^2+(b-2)^2+3>0 是正数

1
a^2 + b^2 -2a-4b+8 = (a-1)^2 + (b-2)^2 +3

大于等于3,总为正数

原式=(a^2-2a+1)+(b^2-4b+4)+3
=(a-1)^2+(b-2)^2+3
所以总是正数

a2+b2-2a-4b+8=(a2-2a+1)+(b2-4b+4)+3=(a-1)2+(b-2)2+3>=3

1
化简式子得(a-1)^2+(b-4)^2+3>0

化简式子得(a-1)总是正数
a^2+b^2-2a-4b+8
=a^2-2a+1+b^2-4b+4+3 (配方)
=(a-1)^2+(b-2)^2+3>0 是正数 ^2+(b-4)^2+3>0 大于原式=(a^2-2a+1)+(b^2-4b+4)+3
=(a-1)^2+(b-2)^2+3
所以总是正数 等于3,总为正数 a2+b2-2a-4b...

全部展开

化简式子得(a-1)总是正数
a^2+b^2-2a-4b+8
=a^2-2a+1+b^2-4b+4+3 (配方)
=(a-1)^2+(b-2)^2+3>0 是正数 ^2+(b-4)^2+3>0 大于原式=(a^2-2a+1)+(b^2-4b+4)+3
=(a-1)^2+(b-2)^2+3
所以总是正数 等于3,总为正数 a2+b2-2a-4b+8=(a2-2a+1)+(b2-4b+4)+3=(a-1)2+(b-2)2+3>=3
1
a^2 + b^2 -2a-4b+8 = (a-1)^2 + (b-2)^2 +3

收起