设f(x)为可导函数,y=sin{f[sinf(x)]} dy/dx=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 14:40:17
x){n_F~ϦnЩ-̫N ZJ
["}ِg_@V$Q8Wz0@YC+MH$ف| Pv
设f(x)为可导函数,y=sin{f[sinf(x)]} dy/dx=
设f(x)为可导函数,y=sin{f[sinf(x)]} dy/dx=
设f(x)为可导函数,y=sin{f[sinf(x)]} dy/dx=
dy/dx=cos{f[sinf(x)]}*{f[sinf(x)]}'
=cos{f[sinf(x)]}*f‘[sinf(x)]*[sinf(x)]’
=cos{f[sinf(x)]}*f‘[sinf(x)]*cosf(x)*f'(x)
设f(x)为可导函数,y=sin{f[sinf(x)]} dy/dx=
设函数f ( x )可导,y= f ( x )cos f ( x )的导数为( ).A:y'= f′( x )cos f ( x )- f( x )sin (f ( x )) f′( x ) B:y ′=-f′( x )sin f ( x ) C:y ′= f′( x )cos f ( x )+ f( x )sin (f ( x )) f′( x ) D:y ′= f′( x )cos f ( x )-f( x )s
设f(x)为可导函数,求dy/dx,(1)y=f(sin^2x)+f(cos^2x)
设f(u)为可导函数,且y=f(sinx)+sinf(x),求y’
设f(x)为可导函数,求dy/dx:y=f(arcsin(1/x))
设f x 为可导函数,y=f^2(x+arctanx),求dy/dx
设f可导,y=sin{f[sin(x)]}且f(0)=0,求y'(0)
设Fx可导,求下列函数的导数:y=f(x²)和v=f(sin²x)+f(cos²x)
设f(x)可导,求dy/dx y=sin f(x²)
设函数y=f(x)可导,则函数f(x²)的微分为
设函数 f(x)=sin(2x+y),(-π
设函数f(x) 可导,又y=f(-x) ,则 y'=
设f(x)可导,求y=f(sin^2x)+f(cos^2x)的导数
设f(x)可导,求y=f(sin²x)+f(cos²x)的导数.
设f(x)可导,求y=f(x*2)+f(sin*2 x)的倒数!
设f(x)可微.y=f(lnx)+f(sin^2*x),求dy
设z=f(x/y)且f为可微函数,则dz=
设函数f(x)可导,则 [sin f(x)]'= (A)sin f'(x) (B)cos f'(x) (C)f'(x)cos f(x) (D)f(x)cos f'(x)