先化简,再求值:x/【y(x+y) 】— y/【x(x+y) 】,其中x=根号2+1 y=根号2-1

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 06:59:33
先化简,再求值:x/【y(x+y) 】— y/【x(x+y) 】,其中x=根号2+1 y=根号2-1
xMN@264tiZH0D73 _MA1M(DZ=7W$]L,Pi_x^9hdƯ~5a+D( w)QV*Cfmd3s?b3Pm@G#)C(1R2%1G`2UZBz˨<BW=}=ic%"b׋R

先化简,再求值:x/【y(x+y) 】— y/【x(x+y) 】,其中x=根号2+1 y=根号2-1
先化简,再求值:x/【y(x+y) 】— y/【x(x+y) 】,其中x=根号2+1 y=根号2-1

先化简,再求值:x/【y(x+y) 】— y/【x(x+y) 】,其中x=根号2+1 y=根号2-1
简单嘛 第一个分数上下同乘以X 后面上下乘以Y 就有
X平方/XY(X+Y)-Y平方/xy(x+Y)
(X+Y)(X-Y)/XY(X+Y)
X-Y / XY
带入 就有 根号2+1 -(根号2-1) 除以1
等于2拉
不太会写数学公式 将就看看吧 你检查下 看对不

原式=(x^2-y^2)/[xy(x+y)]=(x-y)/xy
带入得=2