函数y=2x+3的定义域

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 00:53:54
函数y=2x+3的定义域
xTaoP+5&,(#`2! |#h..)Kl+3G-nι^*٢i!,M,Za"Fԛx.z`}*(9VX!x͋'ɗQg[Ǔh cV)0.c[ZqEtu::evb=6X} \Lv$ ' pՁ~ǯO'ƅ&nWW-vZ-_41>wĊhPm2ezZ@~EDĤHt˃E)v3lоEqt)>nmIb%7d\s`8S˺>]{*\ɬg1j6m~sT>1_^[PY`z?߉y.WЎhOtD%>2 ~!? zLzY#B 4)iVB[8cü I)Ulpy~e _^>?{NT^}øϴt߇-OMP.i ճ~>X*.6|,0

函数y=2x+3的定义域
函数y=2x+3的定义域

函数y=2x+3的定义域
解前分析:
y=3^(-x²+2x+3) 是符合函数,
首先它是幂函数,其指数为二次函数.
对于该幂函数,形如y = a的x次方,
底数3 > 1,属增函数,
但其指数 (-x²+2x+3) 有增减性,
所以该幂函数也 有增减性.
再看指数,分析二次函数的单调区间:
-x²+2x+3
=-(x²-2x+1)+4
=-(x-1)²+4
∵ -x²+2x+3在(--∞,1]为增函数,在[1,+∞)为减函数,
∴ 对于复合函数y=3^(-x²+2x+3) ,
当x在(--∞,1]为增函数,在[1,+∞)为减函数.
体会:对于复合函数,
若本身是增函数,则指数增时它也增,指数减时它也减.
若本身是减函数,则指数增时它就减,指数减时它就增.
∵ 自变量x 既不在分母上也不在根号下
∴复合函数y=3^(-x²+2x+3) 的定义域为R.
y = 3^(-x²+2x+3)
= 3^[-(x²-2x+1)+4]
= 3^[-(x-1)²+4]
≤ 3^4 = 81(底数为3,是增函数)
∴ 值域为:(0,81]
y = 3^(-x²+2x+3)
= 3^[-(x-1)²+4]
∵ -(x-1)²+4 在(--∞,1]为增函数,在[1,+∞)为减函数,
∴ y = 3^(-x²+2x+3) 在(--∞,1]单调递增,在[1,+∞)单调递减.
∴ y = 3^(-x²+2x+3)单调递增区间是(-∞,1];单调递减区间是[1,+∞).
祝您学习顺利!
希望对你能有所帮助.