设函数y=f(x)(x∈R且x≠0)对任意非零实数x1,x2满足f(x1·x2)=f(x1)+f(x2),求证:f(x)为偶函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 06:07:27
x){nϦnMӨԨxdǔG|~ݻ;mO0ԩ0z{mm0i7F:66X~,Ovzڸ
bMR>/>ٽж}13Md X&X,d^].X.\.D!
0:^,$lz*.H̳ f
设函数y=f(x)(x∈R且x≠0)对任意非零实数x1,x2满足f(x1·x2)=f(x1)+f(x2),求证:f(x)为偶函数
设函数y=f(x)(x∈R且x≠0)对任意非零实数x1,x2满足f(x1·x2)=f(x1)+f(x2),求证:f(x)为偶函数
设函数y=f(x)(x∈R且x≠0)对任意非零实数x1,x2满足f(x1·x2)=f(x1)+f(x2),求证:f(x)为偶函数
令x1=x2=1
则f(1)=f(1)+f(1)
f(1)=0
令x1=x2=-1
则f(1)=f(-1)+f(-1)
f(-1)=0
令x2=-1
f(-x1)=f(x1)+f(-1)
所以f(-x1)=f(x1)
所以是偶函数
设函数f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0,f(x)
设函数f(x)的定义域为R,且f(x)不等于0,当x>0,f(x)>1,对x,y属于R,有f(x+y)=f(x)f(y).设函数f(x)的定义域为R,且f(x)不等于0,当x>0时,f(x)>1,对x,y属于R,有f(x+y)=f(x)f(y).(1)求证:f9x)>0(2)解不等式 f(x)≤ 1/f(x+1
设函数f(x)是奇函数,对任意x,y属于R,都有f(x+y)=f(x)+f(y),且x>0时,f(x)
设函数f(x)是奇函数,对任意x,y属于R,都有f(x+y)=f(x)+f(y),且x>0时,f(x)
设f(x)是R上的函数,且满足f(0)=1,且对x,y∈R都有f(x-y)=f(x)-y(2x-y+1),则f(x)的表达式是?
设函数y=f(x)(x∈R,且x≠o)对任意非零实数x,y,都有f(xy)=f(x)+f(y)成立.判断f(x)的奇偶性
定义在R上的函数f(x),对任意x,y∈R,豆油:f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0,判断f(x)的奇偶性
问题补充:设函数f(x)的定义域为R,且满足下列两个条件:(1)存在x1≠x2,使f(x1)≠f(x2);(2)对任意x∈R,有f(x+y)=f(x)*f(y),(1)求f(0),(2)求证:对任意x,y∈R,f(x)>0恒成立
设函数f(x)的定义域为R,且满足下列两个条件:(1)存在x1≠x2,使f(x1)≠f(x2);(2)对任意x∈R,有f(x+y)=f(x)*f(y),(1)求f(0),(2)求证:对任意x,y∈R,f(x)>0恒成立
证明题,设函数f(x)对任意x,y属于R设函数f(x)对任意x,y属于R,都有f(x+y)=f(x)+f(y),且x大于0时,f(x)小于0 1:求证f(x)是奇函数.2:判断f(x)在R上的单调性
定义在R上的函数f(x)对一切实数x,y满足:f(x)≠0,且f(x+y)=f(x)*f(y),且当x1求证:f(x)在x∈R上是减函数
设函数f(x)对于任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时f(x)
设函数y=f(x)(x∈R且x≠0)对任意非零实数x1,x2满足f(x1·x2)=f(x1)+f(x2),求证:f(x)为偶函数
设f(x)设f(x)是定义在R上的函数且对任意x,y属于R,恒有f(x+y)=f(x)f(y),且x>0时,0
一道有关函数奇偶性的题设函数f(x)对任意x,y∈R都有f(x+y)=f(x)+y(y)且x>0时,f(x)
设函数发(x)对于任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时,f(x)
设函数y=f(x)(x∈R,且x≠0)对任意非零实数x,y都有f(xy)=f(x)+f(y)成立 (1)求证f(1)=f(-1)=0,且f(1/x)=-f(x)(x≠0)(2) 判断f(x)的奇偶性(3)若f(x)在(0,正无穷)上单调递增,解不等式f(1/x)-f(2x-1
设f(x )是R上的函数,且满足f(0)=1,并且对任意实数x,y,都有f(x-y)=f(x)-y(2x-y+1),求f(x)的表达式.