设A使MN矩阵,秩A=n-4,a1,a2,a3,a4为齐次线性方程组AX=0的四个线性无关的解向量,证明a1,a1+a2,a1+a2+a2,a1+a2+a3+a4是AX=0的一个基础解系

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 17:25:50
设A使MN矩阵,秩A=n-4,a1,a2,a3,a4为齐次线性方程组AX=0的四个线性无关的解向量,证明a1,a1+a2,a1+a2+a2,a1+a2+a3+a4是AX=0的一个基础解系
xՓN@_e7%BV%mNB@A CDB^o̔ qɦwz3z6=ML<=:ƵvXpm}MdR$K,wGAMBOCvybK>T|3W8k}xu'|KqHhiܟ|&6 OsP̦]qw2h&ԉ6{͠w{]M)u}*R#Ţj=:cl@Pl֪c&p0@*r (P*B-@²UX*n8WIWZd ݲY= P5fbյ0`R[hp9rP.NEGdyOJZtN

设A使MN矩阵,秩A=n-4,a1,a2,a3,a4为齐次线性方程组AX=0的四个线性无关的解向量,证明a1,a1+a2,a1+a2+a2,a1+a2+a3+a4是AX=0的一个基础解系
设A使MN矩阵,秩A=n-4,a1,a2,a3,a4为齐次线性方程组AX=0的四个线性无关的解向量,证明a1,a1+a2,a1+a2+a2,a1+a2+a3+a4是AX=0的一个基础解系

设A使MN矩阵,秩A=n-4,a1,a2,a3,a4为齐次线性方程组AX=0的四个线性无关的解向量,证明a1,a1+a2,a1+a2+a2,a1+a2+a3+a4是AX=0的一个基础解系
第1步:
因为a1,a2,a3,a4为齐次线性方程组AX=0的解,
所以它们的线性组合 a1,a1+a2,a1+a2+a3,a1+a2+a3+a4 也是AX=0的解
第2步:
需证 a1,a1+a2,a1+a2+a3,a1+a2+a3+a4 线性无关.
设 k1a1 + k2(a1+a2) + k3(a1+a2+a3) + k4(a1+a2+a3+a4) = 0
则 (k1+k2+k3+k4)a1 + (k2+k3+k4)a2 + (k3+k4)a3 + k4a4 = 0
由 a1,a2,a3,a4 线性无关,所以有
k1+k2+k3+k4 = 0
k2+k3+k4 = 0
k3+k4 = 0
k4 = 0
解得 k1=k2=k3=k4=0
所以 a1,a1+a2,a1+a2+a3,a1+a2+a3+a4 线性无关
第3步:
因为 r(A) = n-4,
所以AX=0的基础解系所含向量的个数为 n-r(A) = 4
综上有 a1,a1+a2,a1+a2+a2,a1+a2+a3+a4是AX=0的一个基础解系#

设A使MN矩阵,秩A=n-4,a1,a2,a3,a4为齐次线性方程组AX=0的四个线性无关的解向量,证明a1,a1+a2,a1+a2+a2,a1+a2+a3+a4是AX=0的一个基础解系 设a1,a2为n维列向量,A为n阶正交矩阵,证明[Aa1,Aa2]=[a1,a2] 设A为n阶矩阵,a1,a2,a3是n维列向量,且a1不等于0,Aa1=a1,Aa2=a1+a2,Aa3=a2+a3.证明A和(a1,a2,a3)是一个矩阵? 设|A|是三阶矩阵,A=(a1,a2,a3)则|A|=?A.|a1-a2,a2-a3,a3-a1| B.|a1-a2,a2-a3,a3-a1|C.|a1+2a2,a3,a1+a2| D.|a1-a3,a2+a3,a1+a2| 设a1,a2为n维列向量,A为n阶正交矩阵,证明:(1)[Aa1,Aa2]=[a1,a2] (2){Aa1}={a1} 设A为n阶正定矩阵,a1,a2.am为n维非零列向量,且ai^TAaj=0,证明:a1,a2.am线性无关 设a1,a2,a3均为3维列向量,记矩阵A=(a1,a2,a3)B=(a1+a2+a3,a1+2a2+2a3,a1+3a2+4a3),如果|A|=1,那么|B|= 设矩阵A=(a1,a2,a3)行列式A= -2求行列式a3-2a1,3a2,a1 已知a1,a2为二维列向量,矩阵A=(a1,a2),B=(a1+a1,a2-a2),|A|=2,则|B|=?设n阶方阵A满足A*A+5A-4E=0,则(A-3E)的逆是多少 6.设n元非齐次线性方程组Ax=b的系数矩阵A的秩为n-1,a1,a2为该方程的两个解, 设a1,a2,a3,a4是4维列向量,矩阵A=(a1,a2,a3,a4),如果|A|=2,则|-2A|=() 设n维向量组A1 ,A2 ,A3,A4,A5,线性无关,B1=A1+A2,B2=A2+A3,B3=A3+A4,B4=A4+A5,B5=A5+A1,证明B1B2B3B4B5线性无关(2)设N阶矩阵A满足A^2-3A-2E=0,证明矩阵A可逆并求出其逆矩阵A^-1 设3阶矩阵A=(a1,a2,a3),其中a1,a2,a3均为3维列向量,且|B|=2,矩阵B=(a1+a2+a3,a1+2a2,a1+3a2+a3).则|A|=? 设A为n阶矩阵,r(A)=1,求证:(1)A=(a1 a2 .an)(列向量)*(b1,b2.bn ) (2) A^2=kA 设A为n阶矩阵,a1,a2,...an为n维列向量,an!=0,Aa1=a2,...Aan=0,求证设A为n阶矩阵,a1,a2,...an为n维列向量,an!=0,Aa1=a2,...Aan=0,求证A不能相似对角化 设矩阵A=(a1,a2,a3,a4)的秩r(A)=3,且a1=a2+a3.设β=a1+a2+a3+a4,则线性方程组Ax=β的通解为 设矩阵A=(a1,a2,a3,a4),矩阵A的秩R(A)=3,且a2=a3+a4,b=a1-a2+a3-a4,求方程Ax=b的通解 矩阵A与矩阵B等价,A有一个r阶子式不等于0,则矩阵B的秩?N阶方阵A具有N个不同的特征值是A与一个对角阵相似的什么条件?设A为4阶矩阵,IAI=a 则其伴随矩阵A*的行列式IA*I=?向量组a1 a2 .as s大于等于2