求函数y=cos(x^2)·sin^2(1/x)的微分dy .

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 18:24:15
求函数y=cos(x^2)·sin^2(1/x)的微分dy .
x){igS7T&Qg~Ořy V~|V}vT*$铧QΆ;(Q5J)|nYpEF@U@I8:]HAdfg2.t&C¯`fJ 1qĔ <;Pp

求函数y=cos(x^2)·sin^2(1/x)的微分dy .
求函数y=cos(x^2)·sin^2(1/x)的微分dy .

求函数y=cos(x^2)·sin^2(1/x)的微分dy .
y=cos(x^2)·sin^2(1/x)
y'=-2xsin(x²)sin²(1/x)+cos(x²)2sin1/x cos1/x ·-1/x²
=-2xsin(x²)sin²(1/x)-1/x² cos(x²)sin2/x
所以
dy=【-2xsin(x²)sin²(1/x)-1/x² cos(x²)sin2/x】dx