若函数f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)-g(x)=e^x,比较f(2)f(3)g(0)的大小

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 03:47:57
若函数f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)-g(x)=e^x,比较f(2)f(3)g(0)的大小
xj@EKK|D? BtWBq$jfa6m" `4?y*7Z{oNdԐ,Y1n9K{ ŗ퀳* "yw향$⻮!5dCM\o3HCV=eij'?xz8l]0r?cM7S1"bRUXV 4҇єf lfᄹ#b){7Ѯ*>Z^ LP4 'H[x  J\/"GT$TP 8,`8iٸ%^FuOS:W7Mq?s

若函数f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)-g(x)=e^x,比较f(2)f(3)g(0)的大小
若函数f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)-g(x)=e^x,比较f(2)f(3)g(0)的大小

若函数f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)-g(x)=e^x,比较f(2)f(3)g(0)的大小
因为f(x)是奇函数 所以f(-x)=-f(x)
因为g(x)是偶函数 所以g(-x)=g(x)
把f(x)-g(x)=e^x中的x换成-x,得到f(-x)-g(-x)=e^(-x)
由上可得,-f(x)-g(x)=e^(-x)
与题中等式联立可解得f(x)=(e^x-e^(-x))/2,g(x)=-(e^(-x)-e^x)/2
之后证明单调性就可以比大小了

1.已知函数f(x)=2sin^2 xcos^2 x,x∈R,则f(x)是最小正周期为___的___(奇/偶)函数2.若函数f(x),g(x)分别是R上的奇函数,偶函数,且满足f(x)+g(x)=1/(e^x),则有A.f'(x)+g(x)=0 B.f'(x)-g(x)=0 C.f'(x)+g'(x)=0 D.f(x)-g'(x)=0 若函数f(x),g(x)分别是R上的奇函数、偶函数且满足f(x)+g(x)=e^x则有A.f(2) 若函数f(x)g(x)分别是在R上的奇函数偶函数,且满足f(x)-g(x)=ex,则有:A.g(0) f(x),g(x)分别是定义在R上的奇,偶函数x0,g(-3)=0,不等式f(x)g(x)0.∴ G(x)在(-∞,0)上是增函数且 G(-3)=0.又∵f(x)为奇函数,g(x)为偶函数,∴ (x)=f(x)g(x)为奇函数.∴ G(x)在(0,+∞)上也是增函数且 G(3)=0.当x 已知f(x),g(x)分别是(-a,a)上的奇函数和偶函数,求证:f(x)*g(x)是(-a,a)上的奇函 几道高中数学题(好的追分)1.若函数f(x) g(x)分别是R上的及函数、偶函数,且满足f(x)+g(x)=e^x,则有A.f(e) f(x),g(x)分别是定义在R上的奇,偶函数x0,g(-3)=0,不等式f(x)g(x)0.∴ (x)在(-∞,0)上是增函数且 (-3)=0.又∵f(x)为奇函数,g(x)为偶函数,∴ (x)=f(x)g(x)为奇函数.∴ (x)在(0,+∞)上也是增函数且 (3)=0.当x 若函数f(x),g(x)分别是R上的奇函数,偶函数,且满足f(x)-g(x)=e的x次方,则有f(2),f(3),g(0)的大小关系是? 若函数f(x),g(x)分别是R上的奇函数,偶函数,且满足f(x)-g(x)=e^x,比较g(0),f(2),f(3)的大小要有过程 谢! 若函数f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)-g(x)=e^x,比较f(2)f(3)g(0)的大小 若函数f(x),g(x)分别是R上的奇函数,偶函数,且满足f(x)+g(x)=e^x,比较g(-3),f(3),f(e)的大小 若函数f(x),g(x)分别是R上的奇函数,偶函数,且满足f(x)+g(x)=e^x,比较g(-3),f(3),f(e)的大小如题 若函数F(X),G(X)分别是R上的奇函数,偶函数,且满足F(X)-G(X)=3^x则F(2),G(0),F(3)的大小 x若函数f(x),g(x)分别是R上的奇函数,偶函数,且满足f(x)-g(x)=e ,比较f(2),f(3),g(0)的大小 若函数f(x),g(x)分别是R上的奇函数,偶函数,且满足f(x)-g(x)=e^x,试比较f(2),f(3),g(0)的大小 设函数f(x),g(x)分别是定义在R上的奇函数和偶函数,都不等于0.当x>0时,f'(x)g(x) 设函数f(x)和g(x)分别是R上的偶函数和奇函数,为什么│f(x)│+g(x)的奇偶性不确定 若函数f(x),g(x)分别是R上的奇函数,偶函数且满足f(x)-g(x)=2的x次方 则有( )A.g(0)