由二重积分几何意义,∫∫√(1-x^2-y^2)dxdy= ,其中D={(x,y)| x^2+y^2 =0}由二重积分几何意义,∫∫√(1-x^2-y^2)dxdy= ________,其中D={(x,y)| x^2+y^2 <=1,x,y>=0}比较大小 ∫∫In(x^2+y^2)dxdy___∫∫[In(x^2+y^2)]^3dxdy.D
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 14:13:11
由二重积分几何意义,∫∫√(1-x^2-y^2)dxdy= ,其中D={(x,y)| x^2+y^2 =0}由二重积分几何意义,∫∫√(1-x^2-y^2)dxdy= ________,其中D={(x,y)| x^2+y^2 <=1,x,y>=0}比较大小 ∫∫In(x^2+y^2)dxdy___∫∫[In(x^2+y^2)]^3dxdy.D
由二重积分几何意义,∫∫√(1-x^2-y^2)dxdy= ,其中D={(x,y)| x^2+y^2 =0}
由二重积分几何意义,∫∫√(1-x^2-y^2)dxdy= ________,其中D={(x,y)| x^2+y^2 <=1,x,y>=0}
比较大小 ∫∫In(x^2+y^2)dxdy___∫∫[In(x^2+y^2)]^3dxdy.D:e≤x^2+y^2≤2e
由二重积分几何意义,∫∫√(1-x^2-y^2)dxdy= ,其中D={(x,y)| x^2+y^2 =0}由二重积分几何意义,∫∫√(1-x^2-y^2)dxdy= ________,其中D={(x,y)| x^2+y^2 <=1,x,y>=0}比较大小 ∫∫In(x^2+y^2)dxdy___∫∫[In(x^2+y^2)]^3dxdy.D
1,在D上的二重积分∫∫f(x,y)dxdy的几何意义是,以D为底,以曲面z=f(x,y)为顶的曲顶柱体的体积,本题中根据被积函数和积分区域,可以看出这个积分表示球体x^2+y^2+z^2=1在第一卦限内部分的体积,因此积分=π/6.
2,由于两个积分的积分区域相同,只要比较被积函数在D上的大小即可,由e≤x^2+y^2≤2e可知ln(x^2+y^2)≥1,因此In(x^2+y^2)≤∫[In(x^2+y^2)]^3,即∫∫In(x^2+y^2)dxdy≤∫∫[In(x^2+y^2)]^3dxdy.