设二维随机变量(X,Y)的概率密度为f(x,y)=2-x-y ,0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 08:36:27
设二维随机变量(X,Y)的概率密度为f(x,y)=2-x-y ,0
x){nߓ]=woy9ٜ]Ogl׈Љ|>ٲ}O׷=ݵɎ]i:F :6IE/ Bl#t#3#l5C4@.QSi 4ЩSZ5)%YIy5`0mFJ~JH*AXk V,4Cmkr& \ckwC>Ө @>`ijBDiTi>XQՄhJ)h+7K<;hD؀9SAa4@hRt0

设二维随机变量(X,Y)的概率密度为f(x,y)=2-x-y ,0
设二维随机变量(X,Y)的概率密度为f(x,y)=2-x-y ,0

设二维随机变量(X,Y)的概率密度为f(x,y)=2-x-y ,0
设T=X-Y
则X=(Z+T)/2
Y=(Z-T)/2
f(z,t)=f(x(z,t),y(z,t))*|det(jacobian)|
jacobian=[(dx/dz,dx/dt),(dy/dz,dy/dt)]=[(1/2,1/2)(1/2,-1/2)]
|det(jacobian)|=|-1/4-1/4|=1/2
f(x(z,t),y(z,t))=2-(x+y)=2-z
f(z,t)=(2-z)/2
T=X-Y~(0,1)
fZ(z)=∫(t~(0,1))f(z,t)dt=(2-z)t/2](t~(0,1))=(2-z)/2
0

设T=X-Y
则X=(Z+T)/2
Y=(Z-T)/2
f(z,t)=f(x(z,t),y(z,t))*|det(jacobian)|
jacobian=[(dx/dz,dx/dt),(dy/dz,dy/dt)]=[(1/2,1/2)(1/2,-1/2)]
|det(jacobian)|=|-1/4-1/4|=1/2
f(x(z,t),y(z,t))=2-(x+y)=2-z
f(z,t)=(2-z)/2
T=X-Y~(0,1)
fZ(z)=∫(t~(0,1))f(z,t)dt=(2-z)t/2](t~(0,1))=(2-z)/2
0