设f(x)为定义域为R的函数,对任意x∈R,都满足f(x+1)=f(x-1) ,f(1-x)=f(1+x),且当x∈[0,1]时,f(x)=x²-2x.请指出函数f(x)在区间[-1,1]上的奇偶性、单调区间、最大值和最小值、零点最大值是2 最小值是0..

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 04:17:24
设f(x)为定义域为R的函数,对任意x∈R,都满足f(x+1)=f(x-1) ,f(1-x)=f(1+x),且当x∈[0,1]时,f(x)=x²-2x.请指出函数f(x)在区间[-1,1]上的奇偶性、单调区间、最大值和最小值、零点最大值是2 最小值是0..
xTn@X-C{ȱB*D6M((mPHPIw9 5.Qs{̛yof-梛!nZt\vϻXAX#Ǹ]( R%?*mmU6 ;j,#6UэGcY3ґwV,&sۅde kʂahvPGA3tM9 ;<|8=NaӶ?ZJ:}2s~/@㿳8x)0&AHF+ Op 6kV* r OW0.}:9UlsPp?HC`X#D{ My,ɦ 7:2sLJLAX9rZUӲdƪe\ovcZI{>=8Rz+!SZA5NwyY#Ja= f3:81!)-!:ߕ V?)Ӭ'K.$ b2d5VvcJI70Pɽt%lE7~ eo

设f(x)为定义域为R的函数,对任意x∈R,都满足f(x+1)=f(x-1) ,f(1-x)=f(1+x),且当x∈[0,1]时,f(x)=x²-2x.请指出函数f(x)在区间[-1,1]上的奇偶性、单调区间、最大值和最小值、零点最大值是2 最小值是0..
设f(x)为定义域为R的函数,对任意x∈R,都满足f(x+1)=f(x-1) ,f(1-x)=f(1+x),且当x∈[0,1]时,f(x)=x²-2x.请指出函数f(x)在区间[-1,1]上的奇偶性、单调区间、最大值和最小值、零点
最大值是2 最小值是0..

设f(x)为定义域为R的函数,对任意x∈R,都满足f(x+1)=f(x-1) ,f(1-x)=f(1+x),且当x∈[0,1]时,f(x)=x²-2x.请指出函数f(x)在区间[-1,1]上的奇偶性、单调区间、最大值和最小值、零点最大值是2 最小值是0..
∵对任意x∈R,都满足f(x+1)=f(x-1)
∴f(x)=f(x+2)即f(x)是以2为最小正周期的周期函数,周期可表示为2K,K∈Z
∵f(1-x)=f(1+x)∴f(x)关于X=1对称
又当x∈[0,1]时,f(x)=x²-2x
∵f(x)=x²-2x关于X=1对称
∴x∈[1,2]时,f(x)=x²-2x,即是说当在函数的一个周期区间[0,2]上有
f(x)=x²-2x=(x-1)²-1
∴可以通过平移f(x)=x²-2x在x∈[0,2]的图像得到其他周期区间上的图像
向左平移2个单位得到在[-2,0]上的图像,其函数表达式为f(x)=(x-1+2)²-1=(x+1)²-1
从函数图像上易得到f(x)在[-1,1]上关于Y轴对称,∴f(x)在[-1,1]上是偶函数
最大值是0,最小值是-1,在[-1,0]上单调递增,在[0,1]上单调递减
当X=0时,f(x)=0,∴零点是X=0

设函数f(x)的定义域为R,当x>0时,f(x)>1.对任意的x,y∈R有f(x+y)=f(x)f(y)成立,解不等式:f(x) 函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f'(x)>2,则f(x)>2x+4的阶级为 设函数y=f(x)的定义域为R,对于任意的x∈R,都有f(1+x)= — f(1-x) 求证:函数f(x)的图像关于点(1,0)对称设函数y=f(x)的定义域为R,对于任意的x∈R,都有f(1+x)= — f(1-x)求证:函数f(x)的图像关于点(1,0)对 设函数f(x)的定义域为R,当x 设函数f(x)的定义域为R,当x>0时,f(x)>1,且对任意xy属于R,均有f(x+y)=f(x)f(y),试判断函数f(x)单调性 设函数fx=的定义域为R,对任意函数x,y都有f(x+y)=fx+fy,又当x>0时,fx= 设函数f(x)的定义域为R,有下列3个命题,请判断真假1.若存在常数M,使得对任意x∈R,有f(x)《M,则M是函数f(x)的最大值2.若存在x0∈R,使得对任意的x∈R,且x不等于x0,有f(x) f(x)是定义域为R的函数,对任意x∈R均满足如图所示,试判断函数f(x)的周期性. 函数fx的定义域为R,f(-1)=2,对任意x∈R,f’x>2,则fx>2x+4的解集为 设函数f(x)的定义域为R,对任意的x 有 f(x)+2f(-x)=x平方-2x+3成立,试求函数f(x)的解 已知函数f(x)的定义域为R且对任意x,y∈R,有fx+y)=f(x)+f(y)+2, 问题补充:设函数f(x)的定义域为R,且满足下列两个条件:(1)存在x1≠x2,使f(x1)≠f(x2);(2)对任意x∈R,有f(x+y)=f(x)*f(y),(1)求f(0),(2)求证:对任意x,y∈R,f(x)>0恒成立 设函数f(x)的定义域为R,且满足下列两个条件:(1)存在x1≠x2,使f(x1)≠f(x2);(2)对任意x∈R,有f(x+y)=f(x)*f(y),(1)求f(0),(2)求证:对任意x,y∈R,f(x)>0恒成立 设函数f(x)的定义域为R,对任意实数x,y满足f(a+b)=f(a)*f(b),设当x1,解不等式f(x+5)>1/f(x) 如果函数f(x)的定义域为R,对任意实数a、b满足f(θ+b)f(x)的定义域为R,对任意实数a、b满足f(θ+b)=f(θ)·f(b).设当x<0时,f(x)>1,试解不等式f(x+5)>1/f(x)说明理由. 设函数f(x)的定义域为R,对于任意实数x,y,总有f(x+y)=f(x)*f(y),当X>0,0 函数Fx的定义域为R,f(0)=1,若对任意的x属于R,f(x)+f'(x)2-e^x的解集为 有关函数的一道证明题设函数y=f(x)的定义域为R,当x>0时,f(x)>1,且对任意实数a,b∈R,有f(a+b)=f(a)f(b)恒成立1.证明f(x)恒为正2.证明f(x)为增函数