设设椭圆x2/a2+y2/b2=1(a>b>0)的左焦点为F,上顶点为A,过点A与AF垂直的直线分别交椭圆和x轴正半轴与P Q设椭圆x2/a2+y2/b2=1(a>b>0)的左焦点为F,上顶点为A,过点A与AF垂直的直线分别交椭圆和x轴正半轴与P,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/21 00:32:07
设设椭圆x2/a2+y2/b2=1(a>b>0)的左焦点为F,上顶点为A,过点A与AF垂直的直线分别交椭圆和x轴正半轴与P Q设椭圆x2/a2+y2/b2=1(a>b>0)的左焦点为F,上顶点为A,过点A与AF垂直的直线分别交椭圆和x轴正半轴与P,
xRJA~ qGNvV2k7)$ j~MbgVzκ=72w#n>hUu2FpPaJRR4K閚nٱDرʽG?ݎX9Ίxa63oዳo]2P"m|b*=qX њ=c_:7jfn>>|aMb8';~OS{Kٔ avnQDzE/")#EC}X( lFv

设设椭圆x2/a2+y2/b2=1(a>b>0)的左焦点为F,上顶点为A,过点A与AF垂直的直线分别交椭圆和x轴正半轴与P Q设椭圆x2/a2+y2/b2=1(a>b>0)的左焦点为F,上顶点为A,过点A与AF垂直的直线分别交椭圆和x轴正半轴与P,
设设椭圆x2/a2+y2/b2=1(a>b>0)的左焦点为F,上顶点为A,过点A与AF垂直的直线分别交椭圆和x轴正半轴与P Q
设椭圆x2/a2+y2/b2=1(a>b>0)的左焦点为F,上顶点为A,过点A与AF垂直的直线分别交椭圆和x轴正半轴与P,Q两点,且P分向量AQ所成的比为8:5.求椭圆的离心率

设设椭圆x2/a2+y2/b2=1(a>b>0)的左焦点为F,上顶点为A,过点A与AF垂直的直线分别交椭圆和x轴正半轴与P Q设椭圆x2/a2+y2/b2=1(a>b>0)的左焦点为F,上顶点为A,过点A与AF垂直的直线分别交椭圆和x轴正半轴与P,
设c=1 ,那么AO² = b² = a² - 1
AO² = OF×OQ
OQ=a² - 1
过P做x轴的垂线交x轴于M,
PM/AO=PQ/AQ=5/13
PM=5√(a²-1) / 13
把点P带入椭圆算出P点横坐标=12a/13
MQ/OQ=PQ/AQ=5/13
(a²-1-12a/13)/(a²-1) = 5/13
2a² -3a -2 =0
a=2
椭圆的离心率=c/a=1/2

rtfretfdfrtfdvcfret

设双曲线x2/a2-y2/b2=1(0 设双曲线x2/a2+y2/b2=1(0 1.设双曲线x2/a2+y2/b2=1(0 1.设双曲线x2/a2+y2/b2=1(0 设F为椭圆x2/a2+y2/b2=1(a>b>0)的个焦点,A、B、C为椭圆上三点,若向量FA、FB、FC的 设椭圆x2/a2+y2/b2=1(a>b>0)的离心率为e=1/2,右焦点F(c,0),方程a 设AB分别为椭圆x2/a2+y2/b2=1(a>b>0)的左右顶点,椭圆长半轴的长等于焦距,且a2/c=4,求椭圆方程. 如果一个椭圆和椭圆x2/a2+y2/b2=1(a>0,b>0)共焦点,那么它的方程可设为x2/m+y2/[m-(a2-b2)]=1(m>a2-b2)如果焦点在Y轴,所设的共焦点椭圆方程,是不是只需要把上面的x2和y2换个位置?②,这个结论是如何推导 设椭圆x2/a2+y2/b2=1(a>b>0)与双曲线x2/3-y2/1=1有相同的焦点F1(-c,0).设椭圆x2/a2+y2/b2=1(a>b>0)与双曲线x2/3-y2/1=1有相同的焦点F1(-c,0)F2(c,0)(c>0),P为椭圆上一点,三角形PF1F2的最大面积等于2根号2, 设P(x,y)为椭圆X2/a2+Y2/y2=1(a>b>0)上的任一点.F1,F2是它的左右焦点.求证|PF1|·|PF2|∈〔b2,a2〕 设A是椭圆x2/a2+y2/b2=1(a大于b大于0)长轴上的一个顶点,若椭圆存在点P,使AP垂直OP,求椭圆离心率e的取值范围. 已知椭圆C1:x2 a2 + y2 b2 =1(a>b>0)椭圆C2 设设椭圆x2/a2+y2/b2=1(a>b>0)的左焦点为F,上顶点为A,过点A与AF垂直的直线分别交椭圆和x轴正半轴与P Q设椭圆x2/a2+y2/b2=1(a>b>0)的左焦点为F,上顶点为A,过点A与AF垂直的直线分别交椭圆和x轴正半轴与P, 设F1,F2为椭圆x2/a2+y2/b2=1(a>b>0)的焦点,M为椭圆上一点,MF1垂直于x轴,且∠F1MF2=60°,则椭圆的离心率为 设椭圆x2/a2+y2/b2=1(a>b>0)的左焦点为F,离心率为根号3/3,设椭圆x2/a2+y2/b2=1(a>b>0)的左焦点为F,离心率为根号3/3,过点F且与x轴垂直的直线被椭圆截得的线段长为4倍根号3/3.(1)求椭圆的方程.(2) 设A 设椭圆C:x2/a2+y2/b2=1(a>b>0)的长轴两端点分别为A、A',若椭圆上存在一点M使角AMA'=120度,试求离心率的范围. 设椭圆C:x2/a2+y2/b2=1(a>b>0)的长轴两端点分别为A、A',若椭圆上存在一点M使角AMA'=120度,试求离心率的...设椭圆C:x2/a2+y2/b2=1(a>b>0)的长轴两端点分别为A、A',若椭圆上存在一点M使角AMA'=120度,试求离心 设椭圆:C:x2/a2+y2/b2=1(a大于b大于0)的左焦点为F,上顶点为A …… 垂直的直线分别交椭圆C设椭圆:C:x2/a2+y2/b2=1(a大于b大于0)的左焦点为F,上顶点为A …… 垂直的直线分别交椭圆C与x轴正半轴于点P