如图,抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3),设抛物线的顶点为D 1)求抛物

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 08:10:30
如图,抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3),设抛物线的顶点为D 1)求抛物
xU[OG++T8;3{H3~mnLU'b BB BִM( z_]pT5`vߜƬbMK[^d5y0P}6lK_DWC Vl3dž , )旡"o`p&ú5dz;QxJ`U\%'Wjg_w{|FA'-r%7X{^0@Ni>|+Ώ" I< ۘDͯ,HOC{-ojIU,ڪ6 ``UIՐsAIlh"BX>{dQDd[(oj Y5 $UV.ŧr~*8\wm8ΧZ4rr`4J`,&\m]8ʿaĘH$%MXgK9qS \tBqN`i퇣A\jp\{@r & t B> (yṽ^}moX^M<

如图,抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3),设抛物线的顶点为D 1)求抛物
如图,抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3),设抛物线的顶点为D 1)求抛物

如图,抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3),设抛物线的顶点为D 1)求抛物
1)将A、B、C三点的坐标代入二次函数解析式,求得a=1   b=-2  c=-3则解析式为y=x^2-2x-3
2)顶点坐标横坐标 -b/2a ,(4ac-b^2)/4a   D(1,-4)
3)存在,P点有三种情况是(0,0)(0,1/3)(9,0)  .
 过D做轴的垂线,从而推出垂足为E.则三角形BOC及三角形CED为等腰直角三角形
由图像对称轴为X=1   D(1,-4)及OC=OB=3    角BCD直角 
有勾股定理分别求得边为:BC=3根号2   CD=根号2   BD=2根号5    PC=3PA =1  AC=根号10
三条对应变的比值为:根号2  故存在.
当P(9,0)这时  pa=10  pc=9*9+3*3=3根号10   ac=根号10    他们对应边的比值为根号5
当P(0,1/3)pa的平方=1+(1/3^)2=10/9   则pa=1/3根号10  ac=根号10   pc=3+1/3=10/3
它们对应边的比为:根号5/3 

1)将A、B、C三点的坐标代入二次函数解析式,求得a=1 b=-2 c=-3则解析式为y=x^2-2x-3
2)顶点坐标横坐标 -b/2a ,(4ac-b^2)/4a D(1,-4)
3)存在,P(0,0)(0,1/3)(9,0)
过D做轴的垂线,从而推出垂足为E。则三角形BOC及三角形CED为等腰直角三角形
由图像对称轴为X=1 D(1,-4)及OC...

全部展开

1)将A、B、C三点的坐标代入二次函数解析式,求得a=1 b=-2 c=-3则解析式为y=x^2-2x-3
2)顶点坐标横坐标 -b/2a ,(4ac-b^2)/4a D(1,-4)
3)存在,P(0,0)(0,1/3)(9,0)
过D做轴的垂线,从而推出垂足为E。则三角形BOC及三角形CED为等腰直角三角形
由图像对称轴为X=1 D(1,-4)及OC=OB=3 角BCD直角
有勾股定理分别求得边为:BC=3根号2 CD=根号2 BD=2根号5 PC=3PA =1 AC=根号10
三条对应变的比值为:根号2 故存在。
当P(9,0)这时 pa=10 pc=9*9+3*3=3根号10 ac=根号10 他们对应边的比值为根号5
当P(0,1/3)pa的平方=1+(1/3^)2=10/9 则pa=1/3根号10 ac=根号10 pc=3+1/3=10/3
它们对应边的比为:根号5/3

收起

如图11,抛物线与x轴交于A,B两点,直线y=kx-1与抛物线交于A,C两点,其中A(-1,0),B(3,0),点C的纵坐为-3 如图,抛物线y=1/2x²+bx-2与x轴交于A、B两点,与y轴交于C点,且A(-1,0). (1)求抛物线解析式及顶 如图,抛物线与x轴交于A,B两点,与y轴交于点C(0,-3),抛物线的顶点为D(1,-4)如图,抛物线与x轴交于A,B两点,与y轴交于点C(0,-3),抛物线的顶点为D(1,-4) (1)求该抛物线的解析式(2)以B、C、D为顶 如图,抛物线与x轴交于A,B两点,与y轴交于点C(0,-3),抛物线的顶点为D(1,-4)如图,抛物线与x轴交于A,B两点,与y轴交于点C(0,-3),抛物线的顶点为D(1,-4) (1)求该抛物线的解析式(2)以B、C、D为顶 如图,抛物线与x轴交于A(1,0),B(-3,0)两点,与y轴交于点C(0,3),设抛物线的顶点为D如图,抛物线与x轴交于A(1,0)、B(-3,0)两点,与y轴交于点C(0,3),设抛物线的顶点为D.(1)求该抛物线的解析式与 如图,已知抛物线y=ax平方+bx+3(a不等于0)与x轴交于点A(1,0)B(-3,0)与y轴交于点C 求此抛物线的解析式 如图,在平面直角坐标系中,抛物线与x轴 交于点A(-1,0)和点B(1,0),直线y=2x-1 与y轴交于点C,与抛物线交于点C,D.  (1)求抛物线的解析式;  (2)求点A到直线CD的距离;  (3)平移抛物线, 如图,已知抛物线y=x2-ax +a +2与x轴交于A,B两点,与y轴交于点D(0,8),直线DC∥x轴,交抛物线与另一点C.动点 P如图,已知抛物线y=x2-ax +a +2与x轴交于A、B两点,与y轴交于点D(0,8),直线DC∥x轴,交抛物线与 (2013营口)如图,抛物线与x轴交于点A(1,0)、B(-3,0),与y轴交于点C(0,3) 如图,抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3),设抛物线的顶点为D 1)求抛物 如图,直线y=kx+b交x轴于点A(-1,0)交y轴与点B(0,4)过A,B两点抛物线交x轴与另一C如图直线y=4x+4交x(-1,0)交y轴与点B(0,4)过A,B两点抛物线交x轴与另一点C问:在该抛物线上的对称轴 (2011钦州市)如图,在平面直角坐标系中,抛物线与x轴交于A、B两点(A在B的左侧),与y轴交于点C(0,4)......(2011钦州市)如图,在平面直角坐标系中,抛物线与x轴交于A、B两点(A在B的左侧),与y轴交于点C 如图,抛物线y=a(x2-1)(a<零)与x轴交于A.B与y轴交于点c,过如图,抛物线y=a(x2-1)(a<零)与x轴交于A.B与y轴交于点c,过点b作bd平行ca,交抛物线于点d,梯形acbd的面积为4,求抛物线解析式 如图,抛物线c1:y=ax^2-2ax-c 与x轴交于A,B,且AB=6,与y轴交于C(0,-4 ).如图,抛物线c1:与x轴交于A、B,且AB=6,与y轴交于C(0,-4 ).备用图(1)备用图(2)(1)求抛物线c1的解析式;(2)问抛物线c1上是否存 如图,已知抛物线与x交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3).如图,已知抛物线与x交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3).(1)求抛物线的解析式;(2)设抛物线顶 数学题,如图,抛物线y=(x+1)2+k与y轴交于A,B两点,与y轴交于点C(0,-3)如图,抛物线y=(x+1)2+k与y轴交于A,B两点,与y轴交于点C(0,-3)(1)求抛物线的对称轴及k的值(2)抛物线的对称轴上存在一点P, 如图 已知抛物线y=x2+bx+c与x轴交与A.B俩点【A在B点左侧】与y轴交与点C【0,-3】如图,已知抛物线y=x2+bx+c与x轴交于A、B两点(A点在B点左侧),与y轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线 已知:如图,抛物线y=ax²-2ax+c【a≠0】与y轴交于点c【0,4】,与x轴交于点a、b,已知:如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).(1)求该抛物线的