已知函数f(x)=lnx-a/x,(1)当a>0时,判断f(x)在定义域上的单调性(2)若f(x)在[1,e]上的最小值为3/2,求a的值 (3)若f(x)<x^2在(1,正无穷)上恒成立,求a的取值范围
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 23:55:20
xݒN@_mXh\>W#IMdKU1D` C5
Qch .>Mw,FēIwjA'r)jy3iH&G.i7彖x^Xׂ"+ݩhU. mB`@w
PLH,jYTWyT)w[mPgumSc]>-"TsJ~3 ~P8BLPiVZ
&府4I"k%`g|1V
_S}#Ѵ4"LZ(6$1w(t\Dv(qBƽVox'
已知函数f(x)=lnx-a/x,(1)当a>0时,判断f(x)在定义域上的单调性(2)若f(x)在[1,e]上的最小值为3/2,求a的值 (3)若f(x)<x^2在(1,正无穷)上恒成立,求a的取值范围
已知函数f(x)=lnx-a/x,
(1)当a>0时,判断f(x)在定义域上的单调性
(2)若f(x)在[1,e]上的最小值为3/2,求a的值
(3)若f(x)<x^2在(1,正无穷)上恒成立,求a的取值范围
已知函数f(x)=lnx-a/x,(1)当a>0时,判断f(x)在定义域上的单调性(2)若f(x)在[1,e]上的最小值为3/2,求a的值 (3)若f(x)<x^2在(1,正无穷)上恒成立,求a的取值范围
(1),函数f(x)=lnx-a/x定义域为R+,
当a>0时,f'(x)=1/x+a/x^2=(x+a)/x^2,
当x>0时,x+a>0,f'(x)>0.
所以函数f(x)在定义域R+上是单调递增的.
(2),f(x)在[1,e]上的最小值为3/2,
当a>0时,最小值为:f(1)=ln1-a=3/2,
a=-3/2,与a>0矛盾;
当a0.函数f(x)在定义域R+上单调递增,
在[1,e]上的最小值为:f(1)=ln1-a=3/2,
a=-3/2;此时 11时,y''
已知函数f(x)=lnx+a/x,当a
已知函数f(x)=lnx+a/x,当a
已知函数f(x)=ax-a/x-2lnx
已知函数fx)=lnx+a/x,若f(x)
已知函数f(x)=(x+1)lnx-x+1.
已知函数f(x)=lnx-ax+ (1-a)/x-1已知函数f(x)=lnx-ax (1-a)/x-1(1)a=
已知函数f(x)=(a-1/2)x2+lnx求f(x)极值
已知函数f(x)=a(x-1/x)-2lnx求函数f(x)的单调区间
已知函数F(x)=(a+1)lnx+a(x平方)+1讨论函数F(x)的单调性
已知函数f(x)=lnx,0
已知函数f(x)=lnx,0
已知函数f(x)=1/2x^2+ax-(a+1)lnx(a
已知函数f(x)=(2-a)lnx+1/x+2ax,问当a
已知函数f(x)=x-lnx,g(x)=lnx/x,求证f(x)>g(x)+1/2
已知函数f(x)=lnx-a(x-1)/x(a∈R)(1)求f(x)的单调区间(2)求证:不等式1/lnx-1/x-1
已知函数f(x)=0.5x^2-ax+(a-1)lnx 讨论函数f(x)的单调性
已知函数f(x)=lnx-a/x,g(x)=f(x)=ax-6lnx,
已知函数f(x)=lnx-ax+(1-a)/x(0