设函数f(x)=ka^x-a^(-x)(a>o且a≠)是定义域为R上的奇函数,1若f(1)>0,试求不等式f(x^2+2x)+f(x-4)>0的解集(2)若f(1)=3/2,且g(x)=a^2x+a^-2x-2m,f(x)在1到+无穷的左闭右开区间上的最小值为-2,求m的值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 09:54:20
设函数f(x)=ka^x-a^(-x)(a>o且a≠)是定义域为R上的奇函数,1若f(1)>0,试求不等式f(x^2+2x)+f(x-4)>0的解集(2)若f(1)=3/2,且g(x)=a^2x+a^-2x-2m,f(x)在1到+无穷的左闭右开区间上的最小值为-2,求m的值
设函数f(x)=ka^x-a^(-x)(a>o且a≠)是定义域为R上的奇函数,1若f(1)>0,试求不等式f(x^2+2x)+f(x-4)>0的解集
(2)若f(1)=3/2,且g(x)=a^2x+a^-2x-2m,f(x)在1到+无穷的左闭右开区间上的最小值为-2,求m的值
设函数f(x)=ka^x-a^(-x)(a>o且a≠)是定义域为R上的奇函数,1若f(1)>0,试求不等式f(x^2+2x)+f(x-4)>0的解集(2)若f(1)=3/2,且g(x)=a^2x+a^-2x-2m,f(x)在1到+无穷的左闭右开区间上的最小值为-2,求m的值
由Rf(x)为R上的奇函数既有f(0)=k-1=0 既得k=1 由f(1)>0既有a-a^(-1)>0 解得a>1 不等式变形为 f(x^2+2x)>-f(x-4) 由其为奇函数 即可变形为f(x^2+2x)>f(4-x) 接下来就是判断原函数的增减性对函数f(x)=a^x-a^(-x) 对其求导的f'(x)=(a^x)*lna(1+1/a^2x)由a>1 既有f'(x)>0 即f(x)为R上增函数 即解不等式x^2+2x>4-x 解得x1 由f(1)=3/2解得a=2 则g(x)=4^x+4^(-x)-2x-2m 对g(x)求导得g‘(x)=[ln4*(4^x-1)(4^x+1)]/(4^x)-2 由此时x>1 既有)=[ln4*(4^x-1)(4^x+1)]/(4^x)>0 有其有最小值 令g‘(x)=0 解得x=1+根号2 既有g(1+根号2)=-2 解得m=[4^(2+2倍根号2)+1]/(2*4^(根号2+1))
..