已知向量a=(cosA ,sinA ),向量b=(根号3,1),则|2向量a-向量b|的最小值?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 13:44:04
已知向量a=(cosA ,sinA ),向量b=(根号3,1),则|2向量a-向量b|的最小值?
x){}KN?V#9QA83QAS"dlΧۍu b3ku jjy6 {mia~ ;{jujlMtM*lMA%jik-1buM4u2kŴ5 5!,t-b!bp[Am t  Ov/گ@A{'+٧or³۞O{F 1Nhܭ

已知向量a=(cosA ,sinA ),向量b=(根号3,1),则|2向量a-向量b|的最小值?
已知向量a=(cosA ,sinA ),向量b=(根号3,1),则|2向量a-向量b|的最小值?

已知向量a=(cosA ,sinA ),向量b=(根号3,1),则|2向量a-向量b|的最小值?
因为 |2a-b|^2=4a^2-4a*b+b^2
=4[(cosa)^2+(sina)^2]-4(√3cosa+sina)+(3+1)
=8-8sin(a+π/3)
最小值为 8-8=0 ,
所以 |2a-b| 最小值为 0 .(当 cosa=√3/2,sina=1/2 时取)