设双曲线x2/4-y2/9=1,F1F2是其中两个焦点.点M在双曲线上.(1)若∠F1MF2=90°,求△F1MF2的面积.(2)若∠F1MF2=60°时,△F1MF2的面积是多少?若∠F1MF2=120°,△F1MF2的面积又是多少?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 15:41:32
设双曲线x2/4-y2/9=1,F1F2是其中两个焦点.点M在双曲线上.(1)若∠F1MF2=90°,求△F1MF2的面积.(2)若∠F1MF2=60°时,△F1MF2的面积是多少?若∠F1MF2=120°,△F1MF2的面积又是多少?
xWKOW+U̘Ҡ2ɢEnfM5]!&< ߖ#;3+B33(REQqι~\[~S.Jk4XL@ ӚӪQ8): aVX[e_{ !sy=7b󌥖T]cc@;i*2ζ#X`[iýSXc `Qr6ʼnvmW]qK8Gl#8ňK/-kto6];"# 8EV<15V ¤wq"/c3fN9ܾ3#bwnH!+ҚD߇>~F%%)ڠ1Jz:4ظy(8H֜HRw_9+W ybf}iF<nfN1%\{@1b95wD!#LN G²"!4tMb1@ذ|O~y$PXdxfm48*t?.t%v<ZmH-3F3`J͚;/:W).7#. b;!w%'8JG q%D >y

设双曲线x2/4-y2/9=1,F1F2是其中两个焦点.点M在双曲线上.(1)若∠F1MF2=90°,求△F1MF2的面积.(2)若∠F1MF2=60°时,△F1MF2的面积是多少?若∠F1MF2=120°,△F1MF2的面积又是多少?
设双曲线x2/4-y2/9=1,F1F2是其中两个焦点.点M在双曲线上.
(1)若∠F1MF2=90°,求△F1MF2的面积.
(2)若∠F1MF2=60°时,△F1MF2的面积是多少?若∠F1MF2=120°,△F1MF2的面积又是多少?

设双曲线x2/4-y2/9=1,F1F2是其中两个焦点.点M在双曲线上.(1)若∠F1MF2=90°,求△F1MF2的面积.(2)若∠F1MF2=60°时,△F1MF2的面积是多少?若∠F1MF2=120°,△F1MF2的面积又是多少?

做此题事前,知道双曲线是有对称性的,如果能满足题意,则满足题意的至少有四个三角形.
此题求面积,与几个三角形没关系,我们只探讨简便算法,如果遇到此题时,怎样快速见效.
此题,先画图.如果按照1楼不负责任地做法,你会做至少一个小时,中间很容易做错.细心发现:底边就是x轴上的焦距,知道M的坐标,其纵坐标的绝对值不就是三角形的高H吗?
方向:求M坐标.
(1)怎样快速:向量坐标运算最快出坐标.不妨设M(x1,y1)
首先满足 x1²/4-y1²/9=1---------①
垂直关系向量F1M⊥向量F2M,向量F1M(x1-√13,y1)F2M(x2+√13,y1)
坐标运算:x1²-13+y1²=0------②(之前说了 四个点对吧,只需找到y1²,得到y1的绝对值)
消去X1,得y1²=81/13 H=绝对值y1=9√13/13
△底边=F1F2=2√13 S=9(快不快!)
(2)和(1)一样,设出M2(x2,y2),M3(x3,y3) 先列60°的
cosθ=1/2= (x1²-13+y1²)/ [√(x1-√13)²+y1²][[√(x1+√13)²+y1²]-----② 可是分母展开化简得有16项,计算不现实.
重新审视此题,我们利用最原始的双曲线定义:到两个焦点的距离差为常数2a.三角形,顶角是60°,两个临边长边减短边等于2a=2*2=4.做出三角形,让FM2为长边(四个三角形中的一个)
过F1往MF2这条线上做高H,F1H=√3/2F1M F2H=F2M-(1/2)*F1M(F1H=1/2F1M)
在Rt△F2HF1中,利用勾股定理 :
3/4*F1M²+[F2M-(1/2)FM1]²=F1F2²=52 展开:
很整齐的式子:F1M²+F2M² - F1M*F2M=52---------②
配方啊,(F2M -F1M)²+F1M *F2M=52 (F2M-F1M=定值2a=4啊,多过瘾)
F1M * F2M= 36
正弦定理S△=(1/2)*36*sin 60°=9√3,绝对和1楼的方法不同!利用的是双曲线的基本定义.
120°,也一样,也是做高 ,但是得在F2M的延长线上做H.
勾股定理应写成:3/4*F1M²+[F2M + (1/2)FM1]²=F1F2²=52
配方化简:,(F2M -F1M)²+3 *F1M *F2M=52
F1M * F2M=12
S△=(1/2)*12*sin 120°=3√3

在△F1MF2中用余弦定理,求MF1*MF2的值,再用S=1/2 *MF1*MF2*SIN∠F1MF2即可.
|F1F2|^2=MF1^2+MF2^2-2MF1*MF2*COS∠F1MF2=(MF1-MF2) ^2+2MF1*MF2 -2MF1*MF2*COS∠F1MF2,上式中,F1F2=2c,(MF1-MF2) ^2=(2a)^2,∠F1MF2已知,只有MF1*M...

全部展开

在△F1MF2中用余弦定理,求MF1*MF2的值,再用S=1/2 *MF1*MF2*SIN∠F1MF2即可.
|F1F2|^2=MF1^2+MF2^2-2MF1*MF2*COS∠F1MF2=(MF1-MF2) ^2+2MF1*MF2 -2MF1*MF2*COS∠F1MF2,上式中,F1F2=2c,(MF1-MF2) ^2=(2a)^2,∠F1MF2已知,只有MF1*MF2未知,求出即可解决你的问题,这是一类题型,椭圆也有类似结论,好好体会,希望能帮到你,满意请加分,祝好运!

收起

设F1F2是双曲线X2/4-Y2=1的两焦点,点P在双曲线上,向量PF1*PF2=0则向量PF1*PF2的长 双曲线x2/4-y2/b2=1,的两个焦点是F1F2,P为双曲线上一点,OP 已知双曲线x2/4+y2/b2=1,两焦点是F1F2,点p在双曲线上,|PF1|,|F1F2|,|PF2|成等比数列,且PF2的绝对值 设双曲线y2/a2-x2/3=1的两个焦点分别为F1F2,离心率为2求两条渐近线的方程, 设双曲线y2/a2-x2/3=1的两个焦点分别为F1F2,其离心率为2.求两条准线方程 数学难题求解:设双曲线y2/a2-x2/3=1的两个焦点分别为F1F2,求两条渐近线的方程. 已知双曲线x2/4-y2/b2=1的两个焦点F1F2,P是双曲线上的一点,且满足PF1*PF2=F1F2已知双曲线x2/4-y2/b2 =1(b∈N)的两个焦点F1 、F2 ,P是双曲线上的一点,且满足 |PF1 |•|PF2 |= |F1F2| ,|PF2| 设F1F2分别为双曲线x2/a2-y2/b2=1的左右焦点,若在双曲线的右支上存在一点P满足:PF1F2以PF1为底边的等腰三角形;直线PF1与圆x2+y2=1/4a2相切,则此圆双曲线的离心率为 已知F1F2是双曲线X2/4-Y2=1的两个焦点,点P在双曲线上且满足角F1PF2=90°,求S三角形F1PF2 设双曲线x2/4-y2/9=1,F1F2是其中两个焦点.点M在双曲线上.(1)若∠F1MF2=90°,求△F1MF2的面积.(2)若∠F1MF2=60°时,△F1MF2的面积是多少?若∠F1MF2=120°,△F1MF2的面积又是多少? 设双曲线x2/a2-y2/b2=1(0 设双曲线x2/a2+y2/b2=1(0 1.设双曲线x2/a2+y2/b2=1(0 1.设双曲线x2/a2+y2/b2=1(0 设P是双曲线X2/4-Y2/b2=1上一点,双曲线的一条渐近线方程为3X-2Y=0,F1F2分别是双曲线的左右焦点,若 IPF1I =3,则点p到双曲线右准线的距离是 设F1F2是双曲线x2/9-y2/16=1的两个焦点,点P在双曲线上且 角F1PF2=60度,求三角形F1PF2的面积? 设f1和f2为双曲线x2/4-y2=1的两个焦点,点p在双曲线上,使得 由双曲线x2/9+y2/4=1上一点P与左 右焦点F1 ,F2 构成三角形 ,求三角形PF1F2的内切园与F1F2的切点坐标