如图,在平面直角坐标系中,△AOB为等腰直角三角形,A(4,4) (1)求B点坐标; (2)若C为x轴正半轴上一

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 14:23:03
如图,在平面直角坐标系中,△AOB为等腰直角三角形,A(4,4) (1)求B点坐标; (2)若C为x轴正半轴上一
xV]OP+\jVLVTfi#@!ꅗ¢|l%OYmh…\~>Yzzٛu6K־sVinOU8,ەQ()FƮT9o{ؕw#)RZndzOҪmQ轅]4ϼ{Y`Wve&U)exz2}Ҏ/2at Teʩ>J*L'CcucF-OՂ)=K Pa,qħcTZhIm5ę?ⳁuMvrn-cZ >O*?v47^:秗flv?w zϪ "T*jOolEf0q`$Sʔ {,[dGmJH3ډ$q.ܪ-Ff rעЂW cgI5XlAd Y\+Oaɻ… Bȿl{ؙۿ|;[Q 8W`a 1`+hCrjhRA wk*!Dpd#&n>X hARHvB:-@lwXu旅$s>w.眒O+2D1eC{wyפYj`ԄМ`#Mߝ a߆b^ˮK0ʢ i7.@m Sݛ`-/ޣwxI&Ͳ]o#K:/ʦxd5ޞ8ZtNo'0F

如图,在平面直角坐标系中,△AOB为等腰直角三角形,A(4,4) (1)求B点坐标; (2)若C为x轴正半轴上一
如图,在平面直角坐标系中,△AOB为等腰直角三角形,A(4,4) (1)求B点坐标; (2)若C为x轴正半轴上一

如图,在平面直角坐标系中,△AOB为等腰直角三角形,A(4,4) (1)求B点坐标; (2)若C为x轴正半轴上一
(1)作AE⊥OB于E,
∵A(4,4),
∴OE=4,
∵△AOB为等腰直角三角形,且AE⊥OB,
∴OE=EB=4,
∴OB=8,
∴B(8,0);
(2)作AE⊥OB于E,DF⊥OB于F,
∵△ACD为等腰直角三角形,
∴AC=DC,∠ACD=90°
即∠ACF+∠DCF=90°,
∵∠FDC+∠DCF=90°,
∴∠ACF=∠FDC,
又∵∠DFC=∠AEC=90°,
∴△DFC≌△CEA,
∴EC=DF,FC=AE,
∵A(4,4),
∴AE=OE=4,
∴FC=OE,即OF+EF=CE+EF,
∴OF=CE,
∴OF=DF,
∴∠DOF=45°,
∵△AOB为等腰直角三角形,
∴∠AOB=45°,
∴∠AOD=∠AOB+∠DOF=90°;
方法一:过C作CK⊥x轴交OA的延长线于K,
则△OCK为等腰直角三角形,OC=CK,∠K=45°,
又∵△ACD为等腰Rt△,
∴∠ACK=90°-∠OCA=∠DCO,AC=DC,
∴△ACK≌△DCO(SAS),
∴∠DOC=∠K=45°,
∴∠AOD=∠AOB+∠DOC=90°;

图呢

...............

(1)作AE⊥OB于E,
∵A(4,4),
∴OE=4,
∵△AOB为等腰直角三角形,且AE⊥OB,
∴OE=EB=4,
∴OB=8,
∴B(8,0);

(2)作AE⊥OB于E,DF⊥OB于F,
∵△ACD为等腰直角三角形,
∴AC=DC,∠ACD=90°
即∠ACF+∠DCF=90°,
∵∠FDC...

全部展开

(1)作AE⊥OB于E,
∵A(4,4),
∴OE=4,
∵△AOB为等腰直角三角形,且AE⊥OB,
∴OE=EB=4,
∴OB=8,
∴B(8,0);

(2)作AE⊥OB于E,DF⊥OB于F,
∵△ACD为等腰直角三角形,
∴AC=DC,∠ACD=90°
即∠ACF+∠DCF=90°,
∵∠FDC+∠DCF=90°,
∴∠ACF=∠FDC,
又∵∠DFC=∠AEC=90°,
∴△DFC≌△CEA,
∴EC=DF,FC=AE,
∵A(4,4),
∴AE=OE=4,
∴FC=OE,即OF+EF=CE+EF,
∴OF=CE,
∴OF=DF,
∴∠DOF=45°,
∵△AOB为等腰直角三角形,
∴∠AOB=45°,
∴∠AOD=∠AOB+∠DOF=90°;
方法一:过C作CK⊥x轴交OA的延长线于K,
则△OCK为等腰直角三角形,OC=CK,∠K=45°,
又∵△ACD为等腰Rt△,
∴∠ACK=90°-∠OCA=∠DCO,AC=DC,
∴△ACK≌△DCO(SAS),
∴∠DOC=∠K=45°,
∴∠AOD=∠AOB+∠DOC=90°;
(3)FM+OF=AM结论成立.
证明:在AM上截取线段AP=OF,连接PE.
∵EO=AE=4;OF=AP;∠EOF=∠EAP=90°.
∴⊿EOF≌⊿EAP(SAS),EF=EP;∠OEF=∠AEP.
则:∠PEF=∠AEO=90度;又∠HEG=45度.
∴∠PEM=∠FEM=45°;又EM=EM,EF=EP.
∴⊿PEM≌⊿FEM(SAS),PM=PF
∴MF+OF=AM

收起

如图3①,在平面直角坐标系中,△AOB为等腰直角三角形,且A(4,4) 如图,在平面直角坐标系中,三角形AOB为等腰直角三角形,A(4,4).1,求B点坐标; 如图,在平面直角坐标系中等腰直角△AOB的斜边OB在X轴上,直线y=3x-4经过等腰Rt△AOB的直角顶点A. 如图,在平面直角坐标系中,△AOB为等腰直角三角形,A(4,4) (1)求B点坐标; (2)若C为x轴正半轴上一 如图在平面直角坐标系中,等腰Rt△AOB的斜边OB在x轴上,直线y=3x-4进过如图1,在平面直角坐标系中,等腰Rt△AOB的斜边OB在x轴上,直线y=3x-4经过等腰Rt△AOB的直角顶点A,交y轴于C点,双曲线y=k x 也经过A 如图在平面直角坐标系中,等腰Rt△AOB的斜边OB在x轴上,直线y=3x-4进过如图1,在平面直角坐标系中,等腰Rt△AOB的斜边OB在x轴上,直线y=3x-4经过等腰Rt△AOB的直角顶点A,交y轴于C点,双曲线y=k x 也经过A 如图,在平面直角坐标系中,△AOB为等腰直角三角形,A(4,4) (1)求B点坐标(如图一)(2)若C为x轴正半轴上一动点,以AC为直角边作等腰直角△ACD,∠ACD=90°连OD,求∠AOD的度数 如图,在平面直角坐标系中,△AOB为等腰直角三角形,A(4,4) (1)求B点坐标;(2)若C为x轴正半轴上一动点,以AC为直角边作等腰直角△ACD,∠ACD=90°,连OD,求∠AOD的度数;(3)过点A作y轴的垂线 初中几何题,数学高手帮帮忙啊!急求!如图,在平面直角坐标系中,△AOB为等腰直角三角形,A(4,4),(1)若C为x轴正半轴上一动点,以AC为直角边作等腰直角△ACD,∠ACD=90°,连OD,求角AOD的度数;(2) 如图,平面直角坐标系中,△AOB为等腰直角三角形,且OA=AB.(1)在图一中画出△AOB关于BO的轴对称图形△A1OB,若A(-3,1),直接写出A1的坐标—( ,)(不用画,直接写出坐标就行了)(2)当△AOB绕着 一如图1,在平面直角坐标系中,等腰Rt△AOB的斜边OB在x轴上,直线y=3x-4经过等腰Rt△AOB的直角顶点A,交y轴如图1,在平面直角坐标系中,等腰Rt△AOB的斜边OB在x轴上,直线y=3x-4经过等腰Rt△AOB的直角顶点 如图,在平面直角坐标系中,Rt△AOB的顶点坐标分别为A(0,2),O(0,0), B (4,0) △AOB绕O点按逆时针方向旋如图,在平面直角坐标系中,Rt△AOB的顶点坐标分别为A(0,2),O(0,0), B (4,0)△AOB绕O点按逆时针方 如图,在平面直角坐标系中,A(-1,2),B(3,-2),求△AOB的面积 如图在平面直角坐标系中A(-1,2)、B(3,-2),求△AOB的面积 如图,在平面直角坐标系中,A(-1,2),B(3,-2),求△AOB的面积. 如图,在平面直角坐标系中,A(-3,4),B(-1,-2),O为原点,求△AOB的面积 如图在平面直角坐标系中 如图,平面直角坐标系中,△AOB全等△COD为等腰直角三角形,现取其斜边中点对角连接,证明:∠A=90°-2∠1