谁能告诉我哥德巴赫猜想?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 12:23:49
谁能告诉我哥德巴赫猜想?
xX[s+dAL>lVR]&yM ƈ; $!ɒJåjOg'|=g4FBκ [srxۍ2n'-R%hnz/gN.W_=_ϿXԟ_滿ݿi:@m+Xϼu_Vm5.ڳheU"\+;|66jq ȡ5~?&9p6`h բ QPꌺXCSz2i2GF PѢ6J']ˊGv TZ\mټǢwIoq5&ӊ!{Jϱ6Κ=Xs{9{X *EEu&K/rk{p_DϽ>pD6a[mY)UWS(f{ZAgS1hH 5q ';^ˋ+ﷇU0mZRآ[8GW5 AaN'>K ` ]V= glٴ=,nM:gi7NwjQoȝI,PWq6On9tu~NcX̜s1۝t*Ͽ}_Bk{^A2(DSpgTVb?jBJ TX_1"{L4V{[?zw`̨6`P"ս*|"W/< L G=iU:kpх(>@L{\j=}q1"GpDܕ b0 evE.n5pO(Ԃn3Dnk﫤@渜06oMۺa4\<&Q?GROc[C`ۅLF>1tыqAF]=X uQ({=Y\(P%٥Hm?#F9/|/06Jee{-(:M[4ȰqYZ p# &t)%΂Ct wi mJD5kʗ_oPĨ6R9@4X*ri<|{EG+9d9$\MIﲍ3

谁能告诉我哥德巴赫猜想?
谁能告诉我哥德巴赫猜想?

谁能告诉我哥德巴赫猜想?
哥德巴赫猜想(Goldbach Conjecture)大致可以分为两个猜想(前者称"强"或"二重哥德巴赫猜想,后者称"弱"或"三重哥德巴赫猜想):1.每个不小于6的偶数都可以表示为两个奇素数之和;2.每个不小于9的奇数都可以表示为三个奇素数之和.
  哥德巴赫介绍
  哥德巴赫(Goldbach ]C.,1690.3.18~1764.11.20)是德国数学家; 哥德巴赫人物
  出生于格奥尼格斯别尔格(现名加里宁城);曾在英国牛津大学学习;原学法学,由于在欧洲各国访问期间结识了贝努利家族,所以对数学研究产生了兴趣;曾担任中学教师.1725年,到了俄国,同年被选为彼得堡科学院院士;1725年~1740年担任彼得堡科学院会议秘书;1742年,移居莫斯科,并在俄国外交部任职.
  哥德巴赫猜想的由来
  1729年~1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来.在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题.他写道:"我的问题是这样的:随便取某一个奇数,比如77,可以把它写成三个素数之和:77=53+17+7;再任取一个奇数,比如461,461=449+7+5,也是三个素数之和,461还可以写成257+199+5,仍然是三个素数之和.这样,我发现:任何大于5的奇数都是三个素数之和.但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是个别的检验."欧拉回信说:“这个命题看来是正确的”.但是他也给不出严格的证明.同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和,但是这个命题他也没能给予证明.不难看出,哥德巴赫的命题是欧拉命题的推论.事实上,任何一个大于5的奇数都可以写成如下形式:2N+1=3+2(N-1),其中2(N-1)≥4.若欧拉的命题成立,则偶数2(N-1)可以写成两个素数之和,于是奇数2N+1可以写成三个素数之和,从而,对于大于5的奇数,哥德巴赫的猜想成立. 但是哥德巴赫的命题成立并不能保证欧拉命题的成立.因而欧拉的命题比哥德巴赫的命题要求更高. 现在通常把这两个命题统称为哥德巴赫猜想.
  历史上的证明
  从哥德巴赫提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功.当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, ……等等.有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(1)都成立.但严格的数学证明尚待数学家的努力. 哥德巴赫的几个猜想
  从此,这道著名的数学难题引起了世界上成千上万数学家的注意.200年过去了,没有人证明它.也没有任何实质性进展.哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”. 人们对哥德巴赫猜想难题的热情,历经两百多年而不衰.世界上许许多多的数学工作者,殚精竭虑,费尽心机,然而至今仍不得其解. 到了20世纪20年代,才有人开始向它靠近.1920年挪威数学家布朗用一种古老的筛选法证明,得出了一个结论:任何大于特定大偶数N的偶数都可以表示为两个殆素数之和的形式,且这两个殆素数只拥有最多9个素因子.(所谓“殆素数”就是素数因子(包括相同的与不同的)的个数不超过某一固定常数的奇整数.例如,15=3×5有2个素因子,27=3×3×3有3个素因子.)此结论被记为“9+9”.这种缩小包围圈的办法很管用,科学家们于是从“9十9”开始,逐步减少每个殆素数里所含素因子的个数,直到使每个殆素数都是奇素数为止.值得注意的是,考虑到条件“大于特定大偶数N”,利用这种方法得出的结论本质上有别于哥德巴赫猜想.
  哥德巴赫猜想的意义
  哥德巴赫猜想的内容十分简洁,但它的证明却异乎寻常的困难.从哥德巴赫写信之日起,直至1920年,并没有一个方法可以用来证明这个问题. 1900年,在法国巴黎召开的第2届国际数学大会上,德国数学家大卫·希尔伯特在他著名的演说中,为20世纪的数学家建议了23个问题,而哥德巴赫猜想(1)就是他第八个问题的一部分. 1912年,在英国剑桥召开的第5届国际数学大会上,德国数学家E·朗道将哥德巴赫猜想列为数论中按当时数学水平不能解决的4个问题之一. 1921年,数论泰斗、英国数论学家哈罗德·哈代在德国哥德哈根数学会的演讲中,宣称猜想(1)的困难程度“是可以与数学中任何未解决的问题相比拟的”. 我国数学家王元说:“哥德巴赫猜想不仅是数论,也是整个数学中最著名与困难的问题之一.”