解方程(x-a/bc)+(x-b/ac)+(x-c/ab)=2(1/a+1/b+1/c),其中a+b+c不等于0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 12:24:58
解方程(x-a/bc)+(x-b/ac)+(x-c/ab)=2(1/a+1/b+1/c),其中a+b+c不等于0
xN0_ 2iWY|ޫ )# : KR$T]S_˹ H0u|~m? }*/nIqL@H(!-$o ؉^|!9pjԇsqa" {>͔rfe9ٻ̻t"AL8׬t>7\"# Nf[=2'Q>*DÙطZ(q:gc鼤WG%:iWE$^7

解方程(x-a/bc)+(x-b/ac)+(x-c/ab)=2(1/a+1/b+1/c),其中a+b+c不等于0
解方程(x-a/bc)+(x-b/ac)+(x-c/ab)=2(1/a+1/b+1/c),其中a+b+c不等于0

解方程(x-a/bc)+(x-b/ac)+(x-c/ab)=2(1/a+1/b+1/c),其中a+b+c不等于0
题目应该是这样吧?
(x-a)/bc+(x-b)/ac+(x-c)/ab=2(1/a+1/b+1/c)
等式两边各乘以 abc
得:(a+b+c)x-(a²+b²+c²)=2(bc+ac+ab)
(a+b+c)x=(a²+b²+c²)+2(bc+ac+ab)
(a+b+c)x=(a+b+c)²
因为a+b+c≠0
所以等式两边同时除以a+b+c得
x=a+b+c