(1/2+1/3+1/5+1/7+1/11+1/13)*385的整数部分是?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 10:53:12
(1/2+1/3+1/5+1/7+1/11+1/13)*385的整数部分是?
x)0767bS 6bCCaela|V˳[Myӎg3$铣MΆV")kk @RlhiRmdTodeԢmnmjm Uajh 3$ 57su6<ٽ@%6yvPOۀ96-|6'?_7HgU

(1/2+1/3+1/5+1/7+1/11+1/13)*385的整数部分是?
(1/2+1/3+1/5+1/7+1/11+1/13)*385的整数部分是?

(1/2+1/3+1/5+1/7+1/11+1/13)*385的整数部分是?
(1/2+1/3+1/5+1/7+1/11+1/13)*385
=(1/2+1/3+1/13)*385+(1/5+1/7+1/1/11)*385
=192/2+128/3+29*8/13+77+55+35
=516+1/2+1/3+8/13
=517+35/78
所以整数部分是517

没有简便算法

1/3+1/5+1/7+.+1/2n+1 ((1/2)-1)*((1/3)-1)*((1/4)-1)*((1/5)-1)*((1/6)-1)*((1/7)-1)*((1/8)-1)*((1/9)-1)*((1/10)-1) (1+1/2)*(1+1/4)*(1+1/6)*.*(1+1/20)*(1-1/3)*(1-1/5)+(1-1/7)*.*(1-1/2 9*(1-1/2)*(1-1/3)*(1-1/4)*(1-1/5)*(1-1/6)*(1-1/7)*(1-1/8)*(1-1/9)怎样简便计算 (1+2/1)*(1+4/1)*(1+6/1)*...*(1+20/1)*(1-3/1)*(1-5/1)*(1-7/1)*...*(1-21/1)等于多少 (1/2-1/3)+(1/4-1/5)+(1/7-1/10)+(1/14-1/15)+(1/28-1/30)(1/2-1/3)+(1/4-1/5)+(1/7-1/10)+(1/14-1/15)+(1/28-1/30) matlab 编程数组的数据如下:8 1 1 1 1 1 1 3 3 2 1 1 5 1 1 3 1 1 2 1 1 5 3 3 3 1 1 4 5 1 1 1 1 1 2 2 2 2 4 3 1 5 4 2 1 1 1 2 1 3 1 1 2 2 5 2 1 3 2 5 1 1 3 1 1 1 1 2 1 5 4 2 2 1 3 4 1 2 3 1 2 4 4 1 1 1 2 2 2 2 2 1 1 4 4 1 3 2 1 1 5 1 1 3 7 1 1 (1)1+1/2+1/3+1/4+1/5+1/6+1/7+1/14+1/28 1/1*3=1/2(1-1/3)1/3*5=1/2(1/3-1/5)1/5*7=1/2(1/5-1/7).1/17*19=1/2(1/17-1/19)所以1/1*3+1/3*5+1/5*7+.1/17*19=1/2(1-1/3)+1/2(1/3+1/5)+1/2(1/5-1/7)+.1/2(1/17-1/19)=1/2(1-1/3+1/3-1/5+1/5-1/7+1/7.+1/17-1/19)=1/2(1-1/1 1/2+1/3+1/4+1/5+1/6+1/7+.1/20= 因为1/1*3=1/2*(1-1/3),1/3*5=1/2*(1/3-1/5),1/5*7=1/2*(1/5-1/7),.,1/17*19=1/2*(1/17-1/19)所以1/1*3+1/3*5+1/5*7+...+1/17*19=1/2*(1-1/3)+1/2*(1/3-1/5)+1/2*(1/5-1/7)+...+1/2*(1/17-1/19)=1/2*(1-1/3+1/3-1/5+1/5-1/7+...+1/17-1/19)=1/2*(1-1/19)=9/19(1 (1+1/3+1/5+1/7)*(1/3+1/5+1/7+1/9)-(1+1/3+1/5+1/7+1/9)*(1/3+1/5+1/7) 简算(1+1/3+1/5+1/7)*(1/3+1/5+1/7+1/9)-(1+1/3+1/5+1/7+1/9)*(1/3+1/5+1/7) 简便计算 1+3+5+7+.+(2n-1) 求证1/(2*3)+1/(3*5)+1/(4*7)+...+1/((n+1)(2n+1)) 求和:1/1*3+1/2*4+1/3*5+.+1/n(n+1) 1/1*4+1/4*7+1/7*10+.+1/(n+2)(n+1) (3+5/7-2/3)×(1/5+1/7+1/13)-(1/5-1/7+1/13)×3+(1/5+1/7+1/13)×(2/3-7/5)有一个打错了(3+5/7-2/3)×(1/5+1/7+1/13)-(1/5-1/7+1/13)×3+(1/5+1/7+1/13)×(2/3-7/5) 1/2 × 1/5 +1/3 ×1/6+1/4×1/7+1/5×1/8+1/6×1/9+1/7×1/10 1*1/2+1/2*1/3+1/3*1/4+1/4*1/5+1/5*1/6+1/6*1/7用简便方法怎么做?