已知函数y=x2-x-1/x+1/x2(x>0),则该函数的最小值为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 12:42:15
已知函数y=x2-x-1/x+1/x2(x>0),则该函数的最小值为
xQN@ojAʞ0D/1mFkc/TM,-,/8Kƛ6}7O/ͤcSS4h ٦N{GvLׄ*:^!updMp2TgW=Ppx"j7l$d`*.QޡY_gXPb+\u*d)>zC;jLg0a6̮y]|ğ^;*Nv~]k~3K (?ñYWCHg!!Öe/j

已知函数y=x2-x-1/x+1/x2(x>0),则该函数的最小值为
已知函数y=x2-x-1/x+1/x2(x>0),则该函数的最小值为

已知函数y=x2-x-1/x+1/x2(x>0),则该函数的最小值为
由均值不等式得:
y=x2-x-1/x+1/x2
≥2√(x2*1/x2)-2√(x*1/x)当且仅当x2=1/x2和x=1/x时,等号成立.得x=+1或-1,又因为x>0,所以x=1时取得最小值
即y≥2-2=0
所以函数y=x2-x-1/x+1/x2的最小值为0
有什么不懂得可以追问,希望对你有所帮助!