设a,b,c属于正数,利用排序不等式证明1.a^ab^b>a^bb^a(a不等于b)2.(a^2a)(b^2b)(c^2c)>=[a^(b+c)][b^(c+a)][c^(a+b)]
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 21:24:36
xRMK1;Yvimλ#z)hBt+ҪE*Rkl,AT؛0%a,(ߛ[xf鰘hQ (QDI1<ǔQ$C_y&J|BI>z8_6z,Gc6[ѥ^ȀO&JM86O3Z8 SBQZ\6LN?/^EvK";A7xt|_B+~(ܔ&էw:tlo'/áZb
设a,b,c属于正数,利用排序不等式证明1.a^ab^b>a^bb^a(a不等于b)2.(a^2a)(b^2b)(c^2c)>=[a^(b+c)][b^(c+a)][c^(a+b)]
设a,b,c属于正数,利用排序不等式证明
1.a^ab^b>a^bb^a(a不等于b)
2.(a^2a)(b^2b)(c^2c)>=[a^(b+c)][b^(c+a)][c^(a+b)]
设a,b,c属于正数,利用排序不等式证明1.a^ab^b>a^bb^a(a不等于b)2.(a^2a)(b^2b)(c^2c)>=[a^(b+c)][b^(c+a)][c^(a+b)]
1、两边取对数则alga+blgb>algb+blga
不妨设a>b>0,则lga>lgb
由排序不等式alga+blgb>algb+blga
故不等式成立
2、不妨设a>=b>=c,则lga>=lgb>=lgc,所以
alga+blgb+clgc>=blga+clgb+algc
alga+blgb+clgc>=clga+algb+blgc
相加得2alga+2blgb+2clgc>=(b+c)lga+(a+c)lgb+(a+b)lgc
即(a^2a)(b^2b)(c^2c)>=[a^(b+c)][b^(c+a)][c^(a+b)]
设a,b,c属于正数,利用排序不等式证明1.a^ab^b>a^bb^a(a不等于b)2.(a^2a)(b^2b)(c^2c)>=[a^(b+c)][b^(c+a)][c^(a+b)]
利用排序不等式证明如果a,b,c都是正数,求证:bc/a+ca/b+ab/c≥a+b+c
利用排序不等式证明若a,b,c是正数,则a²+b²+c²≥ab+bc+ac
设a,b,c都是正数,证明不等式
设a,b,c属于R+,用排序不等式证明:(a^a)*(b^b)*(c^c)≥(abc)^((a+b+c)/3)
用排序不等式证明(高三)设a,b,c,d,为正数,证明(a/b+c)+(b/c+d)+(c/d+a)+(d/a+b)>等于2
利用排序不等式证明a^3+b^3+c^3>=3abc
设a,b,c都是正数,求证a/b+c +b/c+a +c/a+b≥3/2用排序不等式解.
排序不等式.设a,b,c是正数,求证:a^ab^bc^c>等于(abc)^(a+b+c)/3(求过程)
已知a b c都是正数,证明a/(b+2c)+b/(c+2a)+c/(a+2b)≥1可能用基本不等式,也可能是排序不等式 柯西不等式,
不等式证明已知a,b属于R,试用排序不等式证明:a²+b²>ab+a+b-1
2(a^3+b^3+c^3)》a^2(b+c)+b^2(a+c)+c^2(b+a),用排序不等式证明abc都是正数 2(a^3+b^3+c^3)》(a^2)(b+c)+(b^2)(a+c)+(c^2)(b+a),用排序不等式证明
a,b,c属于R+ 用排序不等式证明a^2/b+c+b^2/c+a+c^2/a+b>=1/2(a+b+c)注意是用排序不等式!2.用柯西不等式证明a^2011+b^2011+c^2011>=a^2010*b+b^2011*c+c^2011*a没有把题目弄反 ,原题就是这样
已知a,b,c为正数,用排序不等式证明2(a^3+b^3+c^3)>=a^2(b+c)+b^2(a+c)+c^2(a+b)
已知a,b,c属于正实数,利用基本不等式证明a^3+b^3+c^3>=3abc
设a,b,c∈R+,利用柯西不等式证明:(a/b+b/c+c/a)(b/a+c/b+a/c)≥9
一道高中的排序不等式的数学题,已知a,b,c为正数,用排序不等式证明:2(aˇ3+bˇ3+cˇ3)≥aˇ2(b+c)+bˇ2(a+c)+cˇ2(a+b)(注:aˇ2(b+c)表示a的平方乘以b+c,后面一样)
不等式证明设a,b,c为正数求证:1/(a^3+b^3+abc)+1/(b^3+c^3+abc)+1/(a^3+c^3+abc)