|m+2|+(n-1)的平方=0,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 18:43:13
|m+2|+(n-1)的平方=0,
x}N@_eZ;z7w}F,B1Ҙ YLiat~:+^aTLYϽ|gP|é{i~LwM]xO?{Vt0&xkų!4Ecz3:y"6iJfD^>iXn[݊T\UӖWի6Nãې!ؗb !ආՀbxWG+ e0=pDd]=kb톇pxQ0l-NQ,Џ[9ĒJE-g'}

|m+2|+(n-1)的平方=0,
|m+2|+(n-1)的平方=0,

|m+2|+(n-1)的平方=0,
因为平方和绝对值都是大于等于0的
所以各项只能等于0
所以M+2=0 M=-2 N-1=0
N=1

m+2=0 m=-2
n-1=0 n=1
因为绝对值与平方都是非负数。若两个非负数相加=0,那他们只能都是0.

由题知: M+2=0 M=-2
N-1=0 N=1

由题意得:
m+2=0,n-1=0
∴m=-2,n=1