关于数学函数的奇偶性g(x)g(—x)=1那它是什么函数?那么【g(x)—1】÷【g(x)+1】是什么函数.我一开始把它看成指数函数,但带入发现不对.怎么办?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 16:29:18
xRNP(- n.`FDZ!Y'йUT]V7̹3w9wt{ָLb@n}=}J)TA,t̻{^hcM5Rݾ}D1Y;KR|c7D՚5$`hh>۷Vi1Ǹ]kzCur3
QRfxSNPF߮I2QsFAW|%lIAmT#DêU]JV
%4WqϕqJ2!~BH壘"O`\_ut!C?-WSS :x82ZmhL<(Y9$惸}BA;Qa/&qTژ>[TJHҚ
关于数学函数的奇偶性g(x)g(—x)=1那它是什么函数?那么【g(x)—1】÷【g(x)+1】是什么函数.我一开始把它看成指数函数,但带入发现不对.怎么办?
关于数学函数的奇偶性
g(x)g(—x)=1那它是什么函数?那么【g(x)—1】÷【g(x)+1】是什么函数.我一开始把它看成指数函数,但带入发现不对.怎么办?
关于数学函数的奇偶性g(x)g(—x)=1那它是什么函数?那么【g(x)—1】÷【g(x)+1】是什么函数.我一开始把它看成指数函数,但带入发现不对.怎么办?
如果g(x)=a的x次幂(a≠0)
那么g(x)g(-x)=a^x*a^-x=a^(x-x)=a^0=1
所以指数函数(至少是a大于0的指数函数)满足g(x)g(-x)=1要求.
【g(x)—1】÷【g(x)+1】=【a^x-1】÷【a^x+1】
应该就是指数函数呀
比如g(x)=a^x 则g(-x)=a^-x(a不等于0)
即:a^x X a^-x=1
[g(x)—1]÷[g(x)+1]=[g(x)+1-2]/[g(x)+1]=1-2/[g(x)+1]
很显然是个反比例函数和指数函数组成的复合函数
关于函数奇偶性(高一数学)函数f(x)和g(x)的定义域为R,若他们都是奇函数或偶函数,则f(x)×g(x)的积是_________(填奇偶性)
关于函数奇偶性的数学问题若f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=3/(x+3),则f(x)= g(x)=
关于数学函数的奇偶性g(x)g(—x)=1那它是什么函数?那么【g(x)—1】÷【g(x)+1】是什么函数.我一开始把它看成指数函数,但带入发现不对.怎么办?
新高一数学,是关于函数的奇偶性和证明增减函数的一些问题.帮帮忙~~1.已知f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=x²+x-2,求f(x),g(x)的表达式.2.若函数f(X)=(x+1)(x+a)为偶函数,则a=____.3.设偶
如果f(x),g(x)都是定义域关于原点对称的函数,那么f【g(x)】的奇偶性与f(x),g(x)的奇偶性有什么关系?
判断函数的奇偶性 g(x)=lg【x+根号(x²+1)】
关于函数奇偶性的数学问题若f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=3/x+3,则f(x)= g(x)=
关于一道数学函数题已知f(x),g(x)是定义在实数R上的奇函数,判断函数G(x)=f(x)g(x)的奇偶性,并证明.(记住要把过程写具体,)
复合函数奇偶性【g(x)偶函数,g(-x)=g(x),f[g(-x)]=f[g(x)],f(-x)=f(x),为偶函数】中:f[g(-x)]=f[g(x)],f(-x)=f(x),为偶函数.←这部怎么推的 为什么[g(-x)]相当于(-x)时 [g(x)]相当于(x)?
已知g(x)的定义域关于原点对称,则函数f(x)=g(x)+g(-x)是?(填奇偶性)我做的是“既是奇函数又是偶函数”,但答案上只给了偶函数
已知函数f(x)=2^x,判断g(x)=[f(x)-1]/[f(x)+1]的奇偶性
判断函数f(x)+g(x)的奇偶性
数学人才 高中数学 求解 详细过程啊已知函数f(x)=2^x-2^-x/2, g(x)=2^x+2^-x/2(1)求证:f(x+y)=f(x)g(y)+f(y)g(x) (2)试讨论函数g(x)的奇偶性与单调性
设函数f(x)=1+1/x-1,g(x)=f(2的x的绝对值次方)(1) 写出函数f(x) g(x)的定义域(2)判断函数f(x) g(x)的奇偶性,理由
高一数学必修1 函数的奇偶性已知f(x),g(x)=分别是(-a,a)上的奇函数和偶函数,求证:f(x)·g(x)是(-a,a)上的奇函数
新高一数学(函数的奇偶性)已知f(x),g(x)分别是(-a,a)上的奇函数和偶函数,求证:f(x)*g(x)是(-a,a)上的奇函数.
设函数f(x),g(x)为定义域相等的奇函数,求F(x)=f(x)+g(x)的奇偶性
关于利用函数奇偶性求解析式已知 f(x)为偶函数,g(x)为奇函数,且满足f(x)+g(x)=1/(x-1),求f(x),g(x)