求下列各三角函数值1、sin750° 2、cos 22π/3 3、tan(-7π/4) 4、sin900°

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 08:23:19
求下列各三角函数值1、sin750° 2、cos 22π/3 3、tan(-7π/4) 4、sin900°
xSN@YҐc&- ?` 0FBݸP_T|ªqaʄs癹N3/NohŬEJC]fO?wlLOCKӤR7vkzB']px~;!A}ݢl-CXbBO<1 &!+i*1^$@R$l ׽z!!B.5qW^xevݑMJS5̦~A+

求下列各三角函数值1、sin750° 2、cos 22π/3 3、tan(-7π/4) 4、sin900°
求下列各三角函数值
1、sin750° 2、cos 22π/3 3、tan(-7π/4) 4、sin900°

求下列各三角函数值1、sin750° 2、cos 22π/3 3、tan(-7π/4) 4、sin900°
1、sin750° =sin(720°+30°)=sin30° =0.5
2、cos 22π/3=cos( 6π+4π/3)=cos4π/3=-0.5
3、tan(-7π/4)=tan(-π-3π/4)=tan(-3π/4)=-tan3π/4=1
4、sin900°=sin(720+180)°=sin180°=0

1、sin750°
=sin(360×2+30)°
=sin30°
=0.5

2、cos 22π/3
=cos(6π+4π/3)
=cos 4π/3
=-0.5

3、tan(-7π/4)
=tan(-2π+π/4)
=tan π/4
=1

4、sin900°

全部展开

1、sin750°
=sin(360×2+30)°
=sin30°
=0.5

2、cos 22π/3
=cos(6π+4π/3)
=cos 4π/3
=-0.5

3、tan(-7π/4)
=tan(-2π+π/4)
=tan π/4
=1

4、sin900°
=sin(360×2+180)°
=sin180°
=0

望采纳,谢谢!

收起

sin750度=sin30度=1/2.
 
cos22派/3=cos2派/3=--cos派/3=--1/2.

tan(--7派/4)=tan(派/4)=1.

sin900度=sin180度=0.

1 =sin(π/6)=1/2
2 =cos(π+π/3)= -cos(π/3)= -1/2
3 = -tan(π+3π/4)= -tan(3π/4)=tan(π/4)=1
4 =sin(5π)=sin(π)=0