取长为2的定线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上,如图,求AM、DM的长

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 15:00:57
取长为2的定线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上,如图,求AM、DM的长
xՐ=n@FHkYy,nM89@d`QU()E0-;m.@7LgǧB'W'f;/n1ڧ:_͇&31$R'2NTXCE'$ % [,#R92ٯa4̤}F-m]~f55&S-<8% vl.s.Kh;èwԍf:

取长为2的定线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上,如图,求AM、DM的长
取长为2的定线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上,如图,求AM、DM的长

取长为2的定线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上,如图,求AM、DM的长
sqr表示根号
PA=1,AD=2,PD=sqr5=PF
AF=SQR5-1=AM
DM=2-(SQR5-1)=3-SQR5

如图所示,以长为2的定线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上.(1)如果AB=√5+1,求AM长;如图所示,以定线段AB为边作正方形ABCD 取长为2的定线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上,如图,求AM、DM的长 如图所示,以长为2的定线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上.(1)求AM,DM的长; 取长为(根号5)+1的定线段AB为边作正方形ABCD,取AB的中点P,连接PD在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上,如图,求AM、DM的长 如图所示,以长为1的定线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上.求AM,DM的长; 以长为2的定线段AB为边作正方形ABCD的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为正方形AMEF,点M在AD上,求,AM,DM的长?图不详,细讲! 如图所示,以长为2的定线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上,如图所示(1)求AM、DM的长(2)求证:AM、DM的长(3)由(2)的结 如图,以长为2的定线段AB为边作为正方形ABCD,取AB的中点P,连接PD,在BA的延具体见下方)急!如图,以长为2的定线段AB为边作为正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F使PF=PD,以AF为边作正 关于黄金分割的初二数学题1.矩形ABCD为黄金矩形,以长BC为边长向外作正方形BEFC,则矩形AEFD为黄金矩形吗?说明理由.2.以长为2cm的线段AB为边作正方形ABCD,取AB的中点P,在BA的延长线上取点F,使PF=PD, 以长2cm的线段AB为边,作正方形ABCD,取AB的重点P,在BA的延长线上取点F,使PF=PD,以AF为边长作正方形AFEM..点M落在AD上.(1)试求AM、DM的长;(2)点M是线段AD的黄金分割点吗?试试说明理由. 捏我怎么写都不会 帮下忙哈以长为2cm的线段AB为边,作正方形ABCD,取AB的中点P,在BA的延长线上取点F,使PF=PD.以AF为边长作正方形AFEM.点M落在AD上.(如下图)1)试求AM,DM的长;2)点M是线段AD的黄金分割点 如图,以长为2的定线段AB为边作为正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F使PF=PD,以AF为求证:AM^2=AD乘以DM。 14.在长为 的线段AB上任取一点M,并以线段AM为边作正方形,则这正方形的 面积介于 与 之间的概率是 .在长为12 的线段AB上任取一点M,并以线段AM为边作正方形,则这正方形的 面积介于36 与81 以长为a的线段AB为作正方形ABCD,取AN的中点P,连接PD,在BA的延长线上取一点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上.(1)求AM、DM的长(2)小明发现线段AF、AB、DM之间存在着某种比例关系,你认为 黄金分割题以长为2cm的定线段AB为边,做正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边长做正方形AFEM,点M落在AD上.1.求AM,DM的长.2.点M是线段AD的黄金分割点吗?请说明理由. 在长12CM的线段AB上任取一点M,并以线段AM为边作正方形,这个正方形的面积介于36平方厘米与81CM^2的概率为 在长12CM的线段AB上任取一点M,并以线段AM为边作正方形,这个正方形的面积介于36平方厘米与81CM^2的概率为答案是5/16 如图,点G是正方形ABCD的对角线CA的延长线上一点,以线段AG为边作一个正方形AEFG,连接GD,BE,若AB=根号2,AG=1,求GD的长