(课129 7)已知数列{an}是等比数列,Sn是其前n项的和,a1,a7,a4成等差数列,求证2S3,S6,S12-S6成等比数列
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 16:23:29
(课129 7)已知数列{an}是等比数列,Sn是其前n项的和,a1,a7,a4成等差数列,求证2S3,S6,S12-S6成等比数列
(课129 7)已知数列{an}是等比数列,Sn是其前n项的和,a1,a7,a4成等差数列,求证2S3,S6,S12-S6成等比数列
(课129 7)已知数列{an}是等比数列,Sn是其前n项的和,a1,a7,a4成等差数列,求证2S3,S6,S12-S6成等比数列
a(7)=a(1)(q^6)
a(4)=a(1)(q^3)
则依题意可得
2a(7)=a(1)+a(4)
所以
2a(1)(q^6)=a(1)+a(1)(q^3)
化简得
2(q^6)-(q^3)-1=0
解得
q^3=1或q^3=-1/2.
对于2S(3)、S(6)和S(12)-S(6)
当它们成等比数列时,
应满足S(6)²=2S(3)×[S(12)-S(6)]
显然,
若q^3=1,q=1,
则
2S(3)=2×3a(1)=6a(1)
S(6)=6a(1)
S(12)-S(6)=6a(1)
上述三者相等,其等比数列关系成立;
当q^3=-1/2时,q^6=1/4,q^12=1/16
则
2S(3)=2a(1)[1-(q^3)]/(1-q)=3a(1)/(1-q)
S(6)=a(1)[1-(q^6)]/(1-q)=(3/4)a(1)/(1-q)
S(12)-S(6)=a(1)[1-(q^12)]/(1-q)-a(1)[1-(q^6)]/(1-q)
=(15/16-3/4)a(1)/(1-q)
=(3/16)a(1)/(1-q)
可见,
2S(3)×[S(12)-S(6)]=(9/16)[a(1)²/(1-q)²] =S(6)²
即2S(3)、S(6)和S(12)-S(6)成等比数列.