已知函数y=f(x+2)是定义域为R的偶函数,且当x≥2时,f(x)=3^x-1,则当x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 11:46:18
x){}K}6uCmF럮dg|Vm5:OvLywrţΥFϦoд55y1$cTOclh^Q@pYdGiūjg
Ov/[Qk U6ѭЄߡP )
٢( `).H̳
C|w9h
BҰ~^4-P` V؇:0[P}(alj+^,_lބ{^Z
D vc
已知函数y=f(x+2)是定义域为R的偶函数,且当x≥2时,f(x)=3^x-1,则当x
已知函数y=f(x+2)是定义域为R的偶函数,且当x≥2时,f(x)=3^x-1,则当x
已知函数y=f(x+2)是定义域为R的偶函数,且当x≥2时,f(x)=3^x-1,则当x
y=f(x+2)为定义域在R上的偶函数,
则f(x+2)=f(-x+2),
所以f(x)=f((x-2)+2)=f(-(x-2)+2)=f(4-x)
又 x. 4-x>2 ,利用 当x>=2时,f(x)=3^x-1
f(4-x)=3^(4-x)-1
当x
函数y=f(x+2)是定义域为R的偶函数,即有f(x+2)=f(-x+2),即函数f(x)的对称轴是x=2,且当x≥2时,f(x)=3^x-1,则当x<2时,4-x>2,即有f(4-x)=3^(4-x)-1,又有f(x)=f(4-x)
故当x<2时,f(x)的解析式为f(x)=3^(4-x)-1
已知函数y=f(x)的定义域为R,值域为[-2,2],则函数y=f(x+1)的值域是
已知函数y=f(x)的定义域为R,其导数f'(x)满足0
已知函数y=f(x)的定义域是[-1,2].函数f[log1/2(3-x)]的定义域为
已知函数f(x)的定义域为R且对任意x,y∈R,有fx+y)=f(x)+f(y)+2,
已知函数f(x)的定义域为R,值域为[1.2],求y=f(x+1)的值域2.已知函数y=f(x)的定义域是[-2.2],求函数y=f(根号下x)与y=f(x^2)的值域;3.已知函数f(x^2-1)的定义域为[-1,3],分别求y=f(x)和f(1-3x)的定义域;4.k为何值
已知函数fx的定义域为R,有f(x)+f(y)=f(x+y),x0恒成立证明y=f(x)是奇函数
已知函数y=f(x+2)是定义域为R的偶函数,且当x>=2时,f(x)=-1+3^x,则当x
已知函数y=f(x+2)是定义域为R的偶函数,且当x≥2时,f(x)=3^x-1,则当x
已知函数Y=f(X)的定义域为R,值域为【-2,2】求Y=(X+1)值域
已知函数y=f(x)是定义域为R的奇函数,求f(0)的值
已知f(x)的定义域为R 且当其定义域为R时f(m+x)=f(m-x)恒成立若函数y=log2(|ax-1|)的图像的对称轴是x=2 已知f(x)的定义域为R ,且当其定义域为R时f(m+x)=f(m-x)恒成立,若函数y=log2(|ax-1|)的图像的对称
定义域为R的函数f(x+y)=f(x)+f(y)恒成立,求f(x)是奇函数
已知函数y=f(x)是定义域为R的单调增函数,则方程f(x)+x=a(a为常数)的根有几个?
急用:已知f(x)的定义域为R,y=f(x-2)是偶函数已知f(x)的定义域为R,y=f(x-2)是偶函数,且f(x)在[-4,-2]上是增函数,则f(-3.5),f(1),f(0)的大小关系为
已知函数f(x)的定义域为R,并且对于任意x、y属于R满足f(x+y)=f(x)+f(y)(1)证明函数f(x)是奇函数(2)若f(x)在R上是减函数,且f(1)=-2,求f(x)在[-3,3]上的最大值和最小值
已知定义域为R的函数y=f(x)满足f(-x)=-f(x+4)当x>2时,f(x)单调递增,若x1
已知定义域为R的函数y=f(x)满足f(-x)=-f(x+4)当x>2时,f(x)单调递增,若x1+x2
已知函数f(x)的定义域为R,若f(x)恒不为零,且对任意x、y有f(x+y)+f(x-y)=2f(x)f(y).判断f(x)的奇偶性.