求定积分∫(1-√3)dx/(x√(x^2+1))

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 03:50:06
求定积分∫(1-√3)dx/(x√(x^2+1))
x){YϗcYƚ)@FEMR>j lH3%%y`^Jmqjub D['|1T5sdHLN} @DhJ 3@7(o_ 5j.!@0`PUu4PHBPSȄ*Д d JB Va3C] f7/.H̳!9fw

求定积分∫(1-√3)dx/(x√(x^2+1))
求定积分∫(1-√3)dx/(x√(x^2+1))

求定积分∫(1-√3)dx/(x√(x^2+1))
令x=tana
dx=sec²ada
x=√3,a=π/3
x=1,a=π/4
原式=∫(π/4,π/3)sec²ada/(tanaseca)
=∫(π/4,π/3)da/sina
=∫(π/4,π/3)sinada/(1-cos²a)
=-∫(π/4,π/3)dcosa/(1-cosa)(1+cosa)
=-1/2∫(π/4,π/3)[-1/(cosa-1)+1/(1+cosa)]dcosa
=-1/2ln[(1+cosa)/(1-cosa)](π/4,π/3)
=-1/2ln(1+1/2)/(1-1/2)+1/2ln(1+√2/2)/(1-√2/2)
=ln[(√6+√3)/3]