解分式方程(X-4)/(X-5)-(X-5)/(X-6)=(X-7)/(X-8)-(X-8)/(X-9)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:27:41
解分式方程(X-4)/(X-5)-(X-5)/(X-6)=(X-7)/(X-8)-(X-8)/(X-9)
xN0@HSbk<W}CB{x`\^ճOFE /t۾-DOzif ZC'lpl kuMULTx!0zxIZn"Q]ʬJnO(vr<=A1i@Cي`4*J/H*,gs `bI>d0FMPlm4v%tI0yCL@x#o~_ƨw])?(N=}Oj

解分式方程(X-4)/(X-5)-(X-5)/(X-6)=(X-7)/(X-8)-(X-8)/(X-9)
解分式方程(X-4)/(X-5)-(X-5)/(X-6)=(X-7)/(X-8)-(X-8)/(X-9)

解分式方程(X-4)/(X-5)-(X-5)/(X-6)=(X-7)/(X-8)-(X-8)/(X-9)
左右两边同乘以(X-5)(X-6)(X-8)(X-9)
得到(X-4)(X-6)(X-8)(X-9)-(X-5)(X-5)(X-8)(X-9)=(X-5)(X-6)(X-7)(X-9)-(X-5)(X-6)(X-8)(X-8)
整理得到-(X-8)(X-9)=-(X-5)(X-6)
展开解得X=7

设y=x-5,则方程左边为(y+1)/y-y/(y-1)=-1/(y²-y)=-1/(x²-11x+30)
色z=x-8,则方程右边为(z+1)/z-z/(z-1)=-1/(z²-z)=-1/(x²-17x+72)
左边=右边
-1/(x²-11x+30)=-1/(x²-17x+72)
即x²-11x+30=x²-17x+72
得x=7。