全等三角形(证明)D为锐角△ABC的边BC的中点,DE⊥AB于点E,DF⊥AC于点F,若DE=DF,求证:AB=AC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 12:03:07
全等三角形(证明)D为锐角△ABC的边BC的中点,DE⊥AB于点E,DF⊥AC于点F,若DE=DF,求证:AB=AC
全等三角形(证明)
D为锐角△ABC的边BC的中点,DE⊥AB于点E,DF⊥AC于点F,若DE=DF,求证:AB=AC
全等三角形(证明)D为锐角△ABC的边BC的中点,DE⊥AB于点E,DF⊥AC于点F,若DE=DF,求证:AB=AC
(1)、在三角形BDE和三角形CDE中
DE=DF
又因D为锐角△ABC的边BC的中点,所以BD=CD.
又因DE⊥AB于点E,DF⊥AC于点F,所以两个三角形都是直角三角形,
用HL定理证明两个三角形全等
从而得出BE=CE.
(2)、连接AD
在三角形AED和三角形AFD中
AD=AD(公共部分)
DE=DF
又因DE⊥AB于点E,DF⊥AC于点F,所以两个三角形都是直角三角形,
用HL定理证明两个三角形全等
得出AE=AF.
(3)、因为AB=AE+BE
AC=AF+CE.
所以,AB=AC.
在三角形BDE和三角形CDE中
∵DE=DF
∵D为锐角△ABC的边BC的中点,所以BD=CD.
∵DE⊥AB于点E,DF⊥AC于点F,所以两个三角形都是直角三角形,
用HL定理证明两个三角形全等
从而得出BE=CE.
连接AD
在三角形AED和三角形AFD中
∵AD=AD(公共部分)
∴DE=DF
∵DE⊥AB于...
全部展开
在三角形BDE和三角形CDE中
∵DE=DF
∵D为锐角△ABC的边BC的中点,所以BD=CD.
∵DE⊥AB于点E,DF⊥AC于点F,所以两个三角形都是直角三角形,
用HL定理证明两个三角形全等
从而得出BE=CE.
连接AD
在三角形AED和三角形AFD中
∵AD=AD(公共部分)
∴DE=DF
∵DE⊥AB于点E,DF⊥AC于点F,所以两个三角形都是直角三角形,
用HL定理证明两个三角形全等
∴得出AE=AF.
∵AB=AE+BE
∴AC=AF+CE.
∴AB=AC.
收起
因为:DE=DF,∠E=∠F=90°,BD=DC,
所以:三角形BDE全等三角形CDF,
所以:角B=角C,所以AB=AC
(1)、在三角形BDE和三角形CDE中
DE=DF
又因D为锐角△ABC的边BC的中点,所以BD=CD.
又因DE⊥AB于点E,DF⊥AC于点F,所以两个三角形都是直角三角形,
用HL定理证明两个三角形全等
从而得出BE=CE.
(2)、连接AD
在三角形AED和三角形AFD中
全部展开
(1)、在三角形BDE和三角形CDE中
DE=DF
又因D为锐角△ABC的边BC的中点,所以BD=CD.
又因DE⊥AB于点E,DF⊥AC于点F,所以两个三角形都是直角三角形,
用HL定理证明两个三角形全等
从而得出BE=CE.
(2)、连接AD
在三角形AED和三角形AFD中
AD=AD(公共部分)
DE=DF
又因DE⊥AB于点E,DF⊥AC于点F,所以两个三角形都是直角三角形,
用HL定理证明两个三角形全等
得出AE=AF.
(3)、因为AB=AE+BE
AC=AF+CE.
所以,AB=AC.
http://zhidao.baidu.com/question/84485459.html?si=1
收起