四边形ABCD是正方形,点G是BC上的任意一点,DE⊥AG于点E,BF//DE,且交AG于点F,求证:AF-BF=EF
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 06:30:14
xRMN@K?Q( @`.ݠg A Qn P5 z_;:1nv{{__:Eb˶.;Ad];8vȢns_EE?
3={Sl0NJF>)!]V .LLNsO%?bE=) h΄`N L'yʡLFɘ"*|Zz+ ZG#G v /ڝi+S"!-cВa AfYi&30(J6v[hiE5YoN9<<^ MW
f1J
``^LM_SN+4
?tK > 0+H0hM&6e2Hm2Au<(~^̰o!
四边形ABCD是正方形,点G是BC上的任意一点,DE⊥AG于点E,BF//DE,且交AG于点F,求证:AF-BF=EF
四边形ABCD是正方形,点G是BC上的任意一点,DE⊥AG于点E,BF//DE,且交AG于点F,求证:AF-BF=EF
四边形ABCD是正方形,点G是BC上的任意一点,DE⊥AG于点E,BF//DE,且交AG于点F,求证:AF-BF=EF
证明:∵ABCD是正方形,
∴AD=AB,∠BAD=90°(1分)
∵DE⊥AG,
∴∠DEG=∠AED=90°
∴∠ADE+∠DAE=90°
又∵∠BAF+∠DAE=∠BAD=90°,
∴∠ADE=∠BAF.(2分)
∵BF∥DE,
∴∠AFB=∠DEG=∠AED.(3分)
在△ABF与△DAE中,{∠AFB=∠AED∠ADE=∠BAFAD=AB,
∴△ABF≌△DAE(AAS).(4分)
∴BF=AE.(5分)
∵AF=AE+EF,
∴AF=BF+EF.(6分)
证明:因为四边形ABCD是正方形,
所以,AD=AB,∠BAF=∠ADE(均为角DAE的余角);
又因为,BF//DE,则∠AFB=∠AED
所以,⊿AFB≌ΔDEA(AAS),
故,AF=DE;AE=BF.
所以,AF-BF=AF-AE=EF.
即,AF=BF+EF
如图,四边形ABCD是正方形,点G是BC上任意一点,DE垂直AB于点E,BF垂直AG于点F,当点G如图,四边形ABCD是正方形.点G是BC上的任意一点,DE⊥AG于点E,BF//DE,且交AG于点F.1当G为BC边中点时,探究线段EF与GF之间
在正方形ABCD中.E是对角线BD上的任意一点,过E做EF⊥BC于点F,EG⊥CD于点G,若正方形ABCD的周长为16,求四边形EFCG的周长
如图,点E是正方形ABCD对角线AC上一点,EF⊥AB,EG⊥BC,垂足分别是F,G.若正方形ABCD的周长是40,求四边形EFBG的周长.过程要清晰,
如图,点E是正方形ABCD对角线AC上一点,EF⊥AB,EG⊥BC,垂足分别是F,G.若正方形ABCD的周长是40,求四边形EFBG的周长
点EFGH在正方形的边AB、BC、CD、DA上,EFGH是正方形,当点EFGH在什么位置,EFGH的面积是ABCD面积的5/9点E、F、G、H分别在正方形的边AB、BC、CD、DA上,且四边形EFGH是正方形,问当点E、F、G、H处在什么位
3、(2009年湖北十堰市)如图①,四边形ABCD是正方形,点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点F.十堰3、(2009年湖北十堰市)如图①,四边形ABCD是正方形,点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点
如图 四边形abcd是正方形,点G是BC上的任意一点,DE⊥AG于点E,BF⊥AG于点F,求证:AF=BF+EF
如图,四边形ABCD是正方形,点G是BC上的任意一点,DE⊥AG于点E,BF‖DE,且交AC于点F,求证:AF-BF=EF.
如图,四边形ABCD是正方形,点G是BC上的任意一点,DE垂直AG于点E,BF平行DE,交AG于点F,求证:AF=BF+EF
四边形ABCD是正方形,点G是BC上的任意一点,DE⊥AG于点E,BF//DE,且交AG于点F,求证:AF-BF=EF
四边形ABCD是正方形.点G是BC上的任意一点,DE垂直AG于点E,BF平行DE,且交AG于点F.求证:AF减BF等于EF
四边形ABCD是正方形.点G是BC上的任意一点,DE垂直AG于点E,BF平行DE,且交AG于点F.求证:AF减BF等于EF
在正方形ABCD的边AB、BC、CD、DA上分别任意取点E、F、G、H.这样得到的四边形EFGH中,是正方形的个数有?最好给出图例啊,
如图,四边形ABCD是正方形.点G是BC上的任意一点,DE⊥AG于E.BF‖DE,且交AG于点F,求证:AF-BF=EF
四边形ABCD是正方形,点E是AC上一点,过点E作EG⊥BC于G,EF⊥AB于F.(1)试猜测DE与FG的关系,并说明理由
如图,四边形ABCD是正方形,G是BC上的任意一点,DE垂直AG于点E,BF平行DE,且交AG于点F,求证:AF-BF=EF
如图,四边形ABCD是正方形.G是BC上的任意一点,DE⊥AG于点E,BF//DE,且交AG于点F.求证:AF-BF=EF.
四边形ABCD是正方形,点E是AC上一点,过点E作EG⊥BC于G,EF⊥AB于F.(1)试猜测DE与FG的关系,并说明理由