正方形abcd的顶点a在直线mn上正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE⊥MN于点E,过点B作BF⊥MN于点F. (1)如图1,当O、B两点均在直线MN上方时,易证:AF+BF=2OE(不需证明)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/21 00:36:55
正方形abcd的顶点a在直线mn上正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE⊥MN于点E,过点B作BF⊥MN于点F. (1)如图1,当O、B两点均在直线MN上方时,易证:AF+BF=2OE(不需证明)
xNA_MwfִiҪbL*`i)|T-]ym 6@(!^7;ߙa'}YuL wug؝i謲nͳ]_Ecȥ#.PYj£_騧y>+z۪$b?vfb(ODWn

正方形abcd的顶点a在直线mn上正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE⊥MN于点E,过点B作BF⊥MN于点F. (1)如图1,当O、B两点均在直线MN上方时,易证:AF+BF=2OE(不需证明)
正方形abcd的顶点a在直线mn上
正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE⊥MN于点E,过点B作BF⊥MN于点F. 
(1)如图1,当O、B两点均在直线MN上方时,易证:AF+BF=2OE(不需证明) 
(2)当正方形ABCD绕点A顺时针旋转至图2、图3的位置时,线段AF、BF、OE之间又有怎样的关系?请直接写出你的猜想,并选择一种情况给予证明.
mn上,点O是对角线AC.BD

正方形abcd的顶点a在直线mn上正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE⊥MN于点E,过点B作BF⊥MN于点F. (1)如图1,当O、B两点均在直线MN上方时,易证:AF+BF=2OE(不需证明)

请发全部内容

正方形abcd的顶点a在直线mn上正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE⊥MN于点E,过点B作BF⊥MN于点F. (1)如图1,当O、B两点均在直线MN上方时,易证:AF+BF=2OE(不需证明) 已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC在直线MN上,E是BC上一点,以AE为边在直线MN上的上方作正方形AEFG.将正方形AEFG绕点A 顺时针旋转,使点E落在CB的延长线上,连接FC,请求出∠FCN度数, 如图,正方形ABCD的顶点c在直线a上,且点B,D到a的距离分别是1,2,这个正方形的边长是 正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE⊥MN于点E,过点B作BF⊥MN于点F.如图6-1,当O、B两点均在直线MN上方时,易得AF+BF=2OE那么当正方形ABCD绕点A顺时针旋转至图2、图3的位 已知:如图,MN是圆O的直径,四边形ABCD、CEFG是正方形,A、D、F在圆O上,B、C、G在直线MN上,S正方形CEFG=4,则圆O的半径为? 如图,在平面直角坐标系xoy中,正方形ABCD的顶点A在直线l:y=2x上,AB⊥x轴,顶点B的坐标为(2,1).求正方形ABCD的面积将直线l绕着点O按顺时针方向旋转,当l经过顶点D时,直线l将正方形ABCD分成两个部 正方形ABCD在直线MN的上方,BC在直线MN上,E在BC上,以AE为边在MN的上方作正方形AEFG.连接FC,求FCN的度 正方形ABCD的两个顶点A、B在抛物线y^2=x上,两顶点C、D在直线y=x+4上,求正方形的边长 求此解析几何题解法正方形ABCD的两顶点A、B在抛物线y=x^2上,两顶点C、D在直线y=x+4上,求正方形的边长.详细一点! 如图,已知正方形ABCD在直线MN的上方,BC在直线MN上,点E是直线上一点,以AE 已知正方形ABCD,E是边BC上一动点,以AE为边作正方形AEFG,(1)连接FC,观察并猜测角FC),已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.求(1)连接FC, 一道数学中考题(2013黑龙江龙东地区)原题:正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE⊥MN于点E,过点B作BF⊥MN于点F. (1)如图1,当O、B两点均在直线MN上方时,易证:AF+ 一道数学中考题(2013黑龙江龙东地区)原题:正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE⊥MN于点E,过点B作BF⊥MN于点F. (1)如图1,当O、B两点均在直线MN上方时,易证:AF+ 如图,已知在圆O中,直径MN=10,正方形ABCD的4个顶点分别在半径OM,OP,及圆O上,且∠POM=45°,试证S正方形ABCD=1/2MN. 若正方形ABCD的一条边AB在直线y=x+4上,顶点C,D在抛物线y2=x上,则正方形的边长是 圆锥曲线的题目(急)已知正方形ABCD的顶点A,B在抛物线y2=x上 C,D在直线y=x+4上,求证正方形的边长. 正方形ABCD的顶点B.C分别在直线Y=2X和Y=4/3X-2上,A.D在X轴上,求正方形的边长 正方形ABCD的顶点A,B在抛物线y=x2上,C,D在直线y=x-4上,求正方形的边长.答案是3√2或5√2