(sinx/1-cosx)*(√(tanx-sinx)/√(tanx+sinx))

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 00:48:57
(sinx/1-cosx)*(√(tanx-sinx)/√(tanx+sinx))
x){83BP79N-ȣY@$1B$ GiC&HB l |ڿe{˹v=];H>[tB˙K^]t{fr<\j6D `X@ӌl&}L 0-hPJk)hThjH(~qAb(L

(sinx/1-cosx)*(√(tanx-sinx)/√(tanx+sinx))
(sinx/1-cosx)*(√(tanx-sinx)/√(tanx+sinx))

(sinx/1-cosx)*(√(tanx-sinx)/√(tanx+sinx))
1、根号里面分子分母同除以Tan[x],得:
(sinx/1-cosx)*(√(1-cosx)/√(1+cosx))
分子分母同除以√(1-cosx),得:
sinx /(√(1-cosx)*√(1+cosx))
=sinx / √(1-cos^2 (x))
=sinx / sinx
=1