数学圆锥曲线的证明?设过椭圆焦点F作直线与椭圆相交 P、Q两点,A为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点F的椭圆准线于M、N两点,则MF⊥NF 如何证明

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 10:14:46
数学圆锥曲线的证明?设过椭圆焦点F作直线与椭圆相交 P、Q两点,A为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点F的椭圆准线于M、N两点,则MF⊥NF 如何证明
xݑ?oPſ #H 3T^=KB!P bjR58C(5揿K{_Hs|' C33;#Lki?VDPg/Ur]4h7(2j: Fh" D{ӠAa3_u- -f`4l$I7"%`ƸM/_uG?Y\Cp-]HU=]ɓj>?  =%#쮎"t I#Xe\LWKJ*tJt锞92,u0щ ^r [)[骔Eg=W%rœyr6U}sɹ7 Ǔ M+pׇ3ď9 hv릈:ኟz8Ҡ tSе a

数学圆锥曲线的证明?设过椭圆焦点F作直线与椭圆相交 P、Q两点,A为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点F的椭圆准线于M、N两点,则MF⊥NF 如何证明
数学圆锥曲线的证明?
设过椭圆焦点F作直线与椭圆相交 P、Q两点,A为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点F的椭圆准线于M、N两点,则MF⊥NF 如何证明

数学圆锥曲线的证明?设过椭圆焦点F作直线与椭圆相交 P、Q两点,A为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点F的椭圆准线于M、N两点,则MF⊥NF 如何证明
设P(x1,y1),Q(x2,y2),列出AP与AQ的直线方程,求出它们与准线的交点M,N,只要证明MF向量点乘NF向量等于零就行了.而P,Q,F在一直线上,(x1-x2)\(y1-y2)=(x1-c)\y1,c是焦点横坐标,易得.

这种题目往往思路简单,运算麻烦,不好写,见谅哈

数学圆锥曲线的证明?设过椭圆焦点F作直线与椭圆相交 P、Q两点,A为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点F的椭圆准线于M、N两点,则MF⊥NF 如何证明 关于圆锥曲线的证明题1. 过抛物线外一点P,作抛物线的两条切线,PA,PB,A,B,为切点,F为焦点,证明角PFA=角PFB2. 过椭圆外一点P,作椭圆的两条切线,PA,PB,A,B,为切点,F为焦点,证明角PFA=角PFB3. 过双曲线两 设过椭圆焦点F作直线与椭圆相交 P、Q两点,A为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点F的椭圆准 高中圆锥曲线应用题 已知椭圆的中心在原点O已知椭圆的中心在原点O,短半轴的端点到其右焦点F(2,0)的距离为√10,过焦点F作直线l,交椭圆于A,B两点①求这个椭圆的标准方程②若椭圆上有一 高中圆锥曲线应用题 已知椭圆的中心在原点O,短半轴的端点到其右焦点F(2,0)的距离为√10已知椭圆的中心在原点O,短半轴的端点到其右焦点F(2,0)的距离为√10,过焦点F作直线l,交椭圆于A,B 高中圆锥曲线应用题已知椭圆的中心在原点O,短半轴的端点到其右焦点F(2,0)的距离为√10,过焦点F作直线l,交椭圆于A,B两点①求这个椭圆的标准方程②若椭圆上有一点C,使四边形AOBC恰好为平 圆锥曲线(椭圆)已知椭圆C的中心在原点,一个焦点F(0,√2),且长轴长与短轴长的比是√2:1(1)求椭圆的方程.(2)过点P作倾斜角互补的两条不同的直线PA,PB分别交椭圆C于另外两点A,B,求证:直线AB的 一道圆锥曲线的题椭圆在X轴上,过椭圆的右焦点F作斜率为1的直线l,交椭圆于A,B两点,M为线段AB的中点,射线OM交椭圆于C,若向量(OA OB=OC),求椭圆离心率. 一道关于圆锥曲线的高中数学题已知椭圆中心为坐标原点O,交点在X轴上,斜率为1且过椭圆右焦点F的直线L交椭圆于A,B两点,向量OA+向量OB与向量n=(1,3)垂直1.求椭圆的离心率e2.设M为椭圆上任意 【椭圆直线】椭圆的中心在原点,焦点在X轴上,过右焦点F作斜率为1的直线交椭圆于A,B.若椭圆是存在点C,是%...【椭圆直线】椭圆的中心在原点,焦点在X轴上,过右焦点F作斜率为1的直线交椭圆于A, 椭圆性质证明1.过椭圆焦点F作直线PQ,A为长轴上的一个顶点,连接AP,AQ,与对应准线交点分别为M,N,求证:MF⊥FN2.过椭圆焦点F作直线PQ,A1,A2分别为长轴上的两个顶点,A1P和A2Q交于点M,A1Q和A2P交于点N, 高二数学选修2-1圆锥曲线的应用在直角坐标系xOy中,设椭圆C:(x2/a2)+(y2/b2)=1(a>b>0)的左右两个焦点分别为F1、F2,过右焦点F2且与X轴垂直的直线L与椭圆C相交,其中一个交点为M(√2 求解一道数学题(圆锥曲线)椭圆的方程为(x^2/5)+y^2=1,过椭圆的右焦点F作直线L交椭圆于A、B两点,交y轴于M点,若向量MA=λ1向量AF,向量MB=λ2向量BF,求证:λ1+λ2为定值. 证明题(圆锥曲线)AB是椭圆长轴上的两个端点,点P是其准线上任一点,直线PA,PB分别与椭圆交于M,N两点,则直线MN恒过焦点 高二数学:椭圆c:x^2/a^2+y^2/b^2=1的离心率为2跟号5/5,且A(0,1)是椭圆的顶点 ①求椭圆方程 ②过点A作斜率为2的直线ll,设以椭圆c的右焦点F为抛物线E:y^2=2px(p>0)的焦点,若点M为抛物线E上任 数学圆锥曲线中抛物线过焦点的直线长的公式 圆锥曲线参数方程设椭圆C (a>b>0)的右焦点为F,过F的直线l与椭圆c相交于A,B两点,直线l的倾斜角为60度,向量AF=2向量FB.第一问 求椭圆的离心率以直线斜率为参数 表示A坐标为(1/2a,根号3/2b) 过A做 直线与圆锥曲线的应用1.已知抛物线C y^2=4x 上存在不同的两点关于直线 y=kx+3对称,求实数k满足的条件2.过椭圆x^2/3+y^2/2=1的左焦点F1作直线L交椭圆于A,B两点,设右焦点为F2,求三角形A F2 B面积的最