设B1是n阶矩阵A属于特征值a1的特征向 量,B2,B3是A属于特征值a2的线性无关 特征向量a1不等于a2证明向量组B1,B2,B3线性无关
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 18:21:06
xRMN@,i[ [hjHlIDѸЦm)
07W0kω`+|Xo&[ޤqG,3oKq~=O<-D-*G=d9F2(AAIgX y<0.c%_*]"۸tV#$NN]DluFɒi9جDf2LHlBNYN],xQ+b{iB6Ts7 <(>D :RӵS>O^]~81wBi|ˆ!e35ĥ=_%ּ
设B1是n阶矩阵A属于特征值a1的特征向 量,B2,B3是A属于特征值a2的线性无关 特征向量a1不等于a2证明向量组B1,B2,B3线性无关
设B1是n阶矩阵A属于特征值a1的特征向 量,B2,B3是A属于特征值a2的线性无关 特征向量a1不等于a2
证明向量组
B1,B2,B3线性无关
设B1是n阶矩阵A属于特征值a1的特征向 量,B2,B3是A属于特征值a2的线性无关 特征向量a1不等于a2证明向量组B1,B2,B3线性无关
设 k1b1+k2b2+k3b3=0 (1)
等式两边左乘A得
k1Ab1+k2Ab2+k3Ab3=0
由已知 Ab1=a1b1,Ab2=a2b2,Ab3=a2b3
所以 k1a1b1+k2a2b2+k3a2b3=0 (2)
(2)-a1(1) 得 (a2-a1)(k2b2+k3b3)=0
再由已知 a1≠a2
所以 k2b2+k3b3=0
而 b2,b3 线性无关
所以 k2=k3=0
代入(1)式得 k1=0
所以 b1,b2,b3 线性无关.
设B1是n阶矩阵A属于特征值a1的特征向 量,B2,B3是A属于特征值a2的线性无关 特征向量a1不等于a2证明向量组B1,B2,B3线性无关
设A是n阶实对称矩阵 P是n阶可逆矩阵 ,已知n维列向量β是属于特征值λ的特征限量,则矩阵(P^( -1) AP)倒置的上面问题只显示了一半设A是n阶实对称矩阵 P是n阶可逆矩阵 已知n维列向量β是属于特征
设A是n阶矩阵,a1,a2是A的特征值,b1,b2是A的分别对应a1,a2的特征向量,对于不全为零的常数c1,c2,有()选项:(A)当a1不等于a2时,c1b1+c2b2必为A的特征向量(B)当a1不等于a2时,b1,b2是A相应于a1,a2唯一
设α是n阶对称矩阵A属于特征值λ的特征向量,求矩阵(P-1AP)T的属于特征值λ的特征向量
A,B均为N阶矩阵,如果A的特征值为a1,...an;B的特征值为b1,...bn那A+B的特征值是多少?
设P是n阶可逆矩阵,B=P^(-1)AP-PAP^(-1),求B的特征值之和,其中P^(-1)就是P的逆设a=(a1,a2,……,an)T(T是转置的意思),b=(b1,b2,...,bn)T 满足aTb=1,求矩阵A=abT的特征值与特征向量图中的4.5两题
设向量a=(a1,a2,……an)的转置,b=(b1,b2...bn)的转置 都是非零向量,且a的转置*b=0,记n阶矩阵A=a*b的转为什么A^2的特征值是0,A的特征值也是零呢
设ξ是矩阵A的属于特征值λ的一个特征向量,求证:ξ是A^n的属于特征值λ^n的一个特征向量
设向量a=(a1,a2,……an)T,b=(b1,b2...bn)T 都是非零向量,且aT*b=0,记n阶矩阵A=a*bT,求A^2的特征值
设A,B是n阶实矩阵,A的特征值互逆,证明矩阵AB=BA的充要条件为A的特征值都是B的特征值
设2是矩阵A的特征值,若1A1=4,证明2也是矩阵A*的特征值
设λ是n阶矩阵A的特征值 则 是A平方的特征值设λ是n阶矩阵A的特征值 则 是A平方的特征值
特征向量于特征值设y1,y2是3阶实对称矩阵A的两个特征值,a1=(2,2,3)^T,a2=(3,3,a)^T依次是A的属于y1,y2的特征向量,求a!
《线性代数》中关于矩阵的一题目:设A是n阶矩阵,P是n阶可逆矩阵,已知n维列向量a是矩阵P-1(P的负1次方)AP的属于特征值λ的特征向量,则矩阵A属于特征值λ的特征向量是______?
设3阶实对称矩阵A的特征值分别是1,2,-2,a=(1,-1,1)'是A属于特征值1的一个特征向量,如何求出另外2个特征量?
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量a是A的属于特征值r的特征向量,则矩阵(P^-1AP)^T设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量a是A的属于特征值r的特征向量,则矩阵(P^-1AP)
设3阶对称矩阵A的特征值入1=1 入2=-1 入3=2 如果α1=(1.1.1)是A的属于入1的一个特征向量,记B=A^3 -3A+I 其中I为3阶单位矩阵,(1) 求B的全部特征值 验证α是矩阵B的特征向量.(2)求B得全部特征向
设β1是n阶矩阵A属于特征值λ1的特征向量,β2,β3是A属于特征值λ2的特征向量,λ1≠λ2,证明:β1,β2,β3线性无关.