定义在R上的函数f(x),任意x,y∈R都有f(x+y)+f(x-y)=2f(x)f(y),f(0)≠0,f(x)为偶函数,存在常数c使f(c/2)=0,证明任意x∈R,f(x+c)=-f(x)成立

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 15:28:05
定义在R上的函数f(x),任意x,y∈R都有f(x+y)+f(x-y)=2f(x)f(y),f(0)≠0,f(x)为偶函数,存在常数c使f(c/2)=0,证明任意x∈R,f(x+c)=-f(x)成立
xՐJ@_ 3qBIofbAH,EDV%5 }2?骯Йҭ;q5sϽk6O2fGӲdu65RGDhj:~бRhF_f4gE! +ĀňgW v -MyZ$fa+L8e1٢3K'V̇2]v`q7 V#=n7;CE -CU@ j2alMU

定义在R上的函数f(x),任意x,y∈R都有f(x+y)+f(x-y)=2f(x)f(y),f(0)≠0,f(x)为偶函数,存在常数c使f(c/2)=0,证明任意x∈R,f(x+c)=-f(x)成立
定义在R上的函数f(x),任意x,y∈R都有f(x+y)+f(x-y)=2f(x)f(y),f(0)≠0,f(x)为偶函数,存在常数c使f(c/2)=0,
证明任意x∈R,f(x+c)=-f(x)成立

定义在R上的函数f(x),任意x,y∈R都有f(x+y)+f(x-y)=2f(x)f(y),f(0)≠0,f(x)为偶函数,存在常数c使f(c/2)=0,证明任意x∈R,f(x+c)=-f(x)成立
这类题是函数方程的简单类型,用赋值法.
f(x+c)+f(x)=f((2x+c)/2+c/2)+f((2x+c)/2-c/2)=2f((2x+c)/2)f(c/2)=0
(解方程组 a+b=x+c
a-b=x)

定义在R+上的函数f(x)满足:1.对任意x,y∈R+,都有f(xy)=f(x)+f(y) 2.当x>1时,f定义在R+上的函数f(x)满足:1.对任意x,y∈R,都有f(xy)=f(x)+f(y) 2.当x>1时,f(x)>0.1.求证:f(x)在R+上是增函数2.求证:f(y/x)=f(y)-f(x 定义在R上的函数f(x),对任意的x、y∈R,有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0,求证f(x)是奇函数 定义在R上的函数f(x),对任意x,y∈R,豆油:f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0,判断f(x)的奇偶性 f(x)是定义在R上的函数,对任意x,y∈R,f(x+y)+f(x-y)=2f(x)f(y)恒成立,且f(0)≠0求f(x)的奇偶性 定义在实数集R上的函数f(x),对于任意x,y∈R,有f(x+y)+f(x-y)=2f(x)f(y),且f(0)≠0.1 判断f(x)的奇偶性. 定义在R上的函数f(x),对任意的x、y∈R,有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0,求证f(x)为偶函数 定义在R上的增函数y=f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y)若f(2*3^x)+f(3^x-9^x-2) 定义在R上的增函数y=f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y) 解不等式f(3x)+f(x+1)<0 定义在实数集R上的函数F(X)对任意X,Y∈R,有F(X+Y)+F(X-Y)=2F(X)*f(Y)f(0)不等于0.求证F(0)=1 已知f(x)是定义在R上的函数,对任意的x,y∈R,都有f(x+y)+f(x-y)=2f(x)f(y),已知f(x)是定义在R上的函数,对任意的x,y∈R,都有f(x+y)+f(x-y)=2f(x)f(y),且f(0)≠0(1):f(0)=1(2):判断函数的奇偶性 已知f(x)是定义在R上的函数,对任意的x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时有f(x)>0 ⑴判断函数奇偶性已知f(x)是定义在R上的函数,对任意的x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时有f(x)>0⑴判断函数 已知定义在R上的函数f(x)满足下面两个条件:1、对于任意的x、y,y∈R,都有f(x+y)=f(x)+f(y).2、当x>0时,f(x) 已知定义在R上的单调函数y=f(x),当x1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y) 求f(0)已知定义在R上的单调函数y=f(x),当x1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y)(1) 求f(0);并写出适合条件的函数f(x)的 若定义在R上的减函数y=f(x),对于任意的x,y属于R,不等式f(x^2-2x) 定义在R上的函数f (x)对任意的x,y∈R,都有f(x+y)=f(x)+f(y)-1,且x>0时,f(x)>1.求证:1.f(x)是R上的增函数.2.函数g(x)=f(x)-1(x∈R)是奇函数. 高一函数性质证明题f(x)是定义在R上的函数,对于任意x,y∈R,均有f(x+y)=f(x)f(y),当x>0时0 设 f(x) 是定义在R上的函数,且对于任意x、y ∈R ,恒有 f(x+y)=f(x) f(y), 且x1. 证明:(1)当f(0)=1, 且x 定义在R+上的函数f(x)满足f(x)+f(y)+2xy(xy)=f(xy)/f(x+y)对任意x,y∈R+,恒成立,则f(2)=______