lim(x,y)趋向于(无穷,a) (1+1/x)^(x^2/(x+y))answer:e
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 22:41:05
x)ըЩ|鄉Ovi<:
چqqFڕyEV6IE_`gCm2ZXL*P]P&d_\gr= yuo
lim(x,y)趋向于(无穷,a) (1+1/x)^(x^2/(x+y))answer:e
lim(x,y)趋向于(无穷,a) (1+1/x)^(x^2/(x+y))
answer:e
lim(x,y)趋向于(无穷,a) (1+1/x)^(x^2/(x+y))answer:e
lim(x,y)趋向于(无穷,a) (1+1/x)^(x^2/(x+y))
= (1+1/x)^[x*x/(x+y)]
=e^[x/(x+y)]
=e^[1/(1+y/x)]
=e
lim(x,y)趋向于(无穷,a) (1+1/x)^(x^2/(x+y))answer:e
lim(arctan1/x)/(1/x),x趋向于无穷,为什么?
lim(x趋向于无穷)(1+3/x)^(x-3)
lim(n趋向于无穷)(x-a)sin(1/a-x)
lim根号n*((a的n分之一次方)-1),x趋向于无穷,
判断极限是否存在lim [n+(-1)^n]/n n趋向于无穷 lim |x|/x x趋向于0
lim(1+xy)^(1/x+1/y) x趋向于0 y趋向于a
求解lim(x趋向于正无穷)x^1/2•[(a+x)^1/2-x^1/2]
lim根号下(x^2-x+1) -ax-b =0 x趋向于正无穷求a,b
x趋向于正无穷时,lim(e^(1/x)-1)^(a/lnx)=2,求a
lim x->趋向于无穷 根号X乘于(根号X+1-根号X-1)
关于无穷小量和无穷大量的问题1、请问y=x分之x+1在x趋向于0时是无穷大量还是无穷小量,为什么?2、用无穷小量的性质求极限,lim下面是n趋向于无穷,式子是n平方加1分之13、lim下面是x趋向pai,pai
求lim x趋向于负无穷 (x/x+1)arctanx“X/(x+1)部分趋向于1”
lim(x趋向于正无穷)(1+x)^1/x乘以(1+1/x)^x
lim (x 趋向于无穷)e^-x^2*cosx
lim x趋向于无穷 (arctanx)/x
lim(xsinx)/x^2-4,x趋向于无穷
lim x 趋向于无穷 (sinx+cosx)/x