thanksss!设数列{an}的前n项和为sn,已知a1=a,an+1=sn+3^n,n∈N* (1)设bn=sn-3^n,求数列{bn}(2)若an-1≥an,n∈N*,求a的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 02:52:16
thanksss!设数列{an}的前n项和为sn,已知a1=a,an+1=sn+3^n,n∈N* (1)设bn=sn-3^n,求数列{bn}(2)若an-1≥an,n∈N*,求a的取值范围
xSJ@Kq&)7Y&+Aq')V Ս*_ŏ)Nڮ Lj"7;{ϙ ɕ%Ɨ ܼEm6DuϞ^%x?i1LY4O;%0\R6aF1mi>!upXbXj+ĒFfܿ].bRO)Fv QOfPL/(0r,ck]݆'`yM >x.9bzmv!PvڿB3F h1-16%NL/A><-KRQۘC_7YJB*vG$fΪ`q)ö^e861'@Rg. 4:^:ۑb +̸.E

thanksss!设数列{an}的前n项和为sn,已知a1=a,an+1=sn+3^n,n∈N* (1)设bn=sn-3^n,求数列{bn}(2)若an-1≥an,n∈N*,求a的取值范围
thanksss!设数列{an}的前n项和为sn,已知a1=a,an+1=sn+3^n,n∈N* (1)设bn=sn-3^n,求数列{bn}
(2)若an-1≥an,n∈N*,求a的取值范围

thanksss!设数列{an}的前n项和为sn,已知a1=a,an+1=sn+3^n,n∈N* (1)设bn=sn-3^n,求数列{bn}(2)若an-1≥an,n∈N*,求a的取值范围
1:A(n+1)=S(n+1)-Sn
得:S(n+1)-Sn=Sn+3^n
∴S(n+1)=2Sn+3^n
∴S(n+1)-3*3^n=2Sn-2*3^n
∴S(n+1)-3^(n+1)=2(Sn-3^n)
∴B(n+1)=2Bn
又∵S1=A1=a,B1=a-3
∴Bn为以a-3为首项,2为公比的等比数列
∴Bn=(a-3)*2^(n-1)
2:a(n+1)=Sn+3^n=bn+2*3^n
a(n+1)-an
=bn+2*3^n-[b(n-1)+2*3^(n-1)]
=bn-b(n-1)+2[3^n-3^(n-1)]
=(a-3)*[2^(n-1)-2^(n-2)]+2[3^n-3^(n-1)]
=(a-3)*2^(n-2)+4*3^(n-1)>=0
a-3>=-4*3^(n-1)/2^(n-2)
=-12*(3/2)^(n-2)
a>=3-12*(3/2)^(n-2)
因为(3/2)^(n-2)最小=(3/2)^(1-2)=2/3
3-12*(3/2)^(n-2)最大=3-12*2/3=-5
a>=-5

thanksss!设数列{an}的前n项和为sn,已知a1=a,an+1=sn+3^n,n∈N* (1)设bn=sn-3^n,求数列{bn}(2)若an-1≥an,n∈N*,求a的取值范围 设等差数列an的前n项和S为.求数列an的前n项和Tn 设数列{an}的前n项和为sn=n^2,求a8 设数列{an}中前n项的和Sn=2an+3n-7则an= 设数列{an}中前n项的和Sn=2an+3n-7,则an= 设数列an的前n项和Sn.且Sn=2an-2,n属于正整数,(1)求数列an的通项公式,(2)设cn=n/an,求数列的前n项和Tn设数列an的前n项和Sn.且Sn=2an-2,n属于正整数,(1)求数列an的通项公式,(2)设cn=n/an,求数列的前n项和Tn 设an=n*4^n,求数列{an}的前n项和(错位相减法) 数列{an},中,a1=1/3,设Sn为数列{an}的前n项和,Sn=n(2n-1)an 求Sn 设数列{an}的前n项和为Sn,Sn=n-an,n属于自然数.求:证明:数列{an-1}是等比数列 设数列an的前n项和为Sn,且2an=Sn+2n+1 求a1 a2 a3 求证:数列{an+2}是等比数列 求数列{n*an}的前n项和Tn 设数列an的前n项和为Sn,且2an=Sn+2n+1 求a1 a2 a3 求证:数列{an+2}是等比数列 求数列{n*an}的前n项和Tn 设数列{an}满足a1+3a2+3^2a3+...+3^n-1an=n/3,求(1)数列{an}的通项公式(2)设bn=n/an求数列bn的前n项 设数列(an)的前n项和为Sn=n2,则a8的值 设数列{an}的前n项和为Sn=3n^2-65n 求数列{IanI}的前n项和 Tn 设数列{an}的前n项和为Sn,且对任意正整数n,an+Sn=4096(2)设数列{log an}的前n项和为Tn,对数列{Tn},从第几项起Tn 已知数列{an}的通项公式为an=n^2-21n+20.求n为何值时,该数列的前n项和最小?答:设数列的前n项和最小,则有an 设数列An的前n项和Sn=2an-2的n次方,求A1,A4 设数列{an}的前n项和Sn=2(an-3),证明{an}为等比数列,并求通项公式