已知数列{log2(an-1)}(n属于n*)为等差数列且a1=3,a2=5,则1/(a2-a1)+1/(a3-a2)+……+1/(a(n+1)-an)=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 14:38:18
已知数列{log2(an-1)}(n属于n*)为等差数列且a1=3,a2=5,则1/(a2-a1)+1/(a3-a2)+……+1/(a(n+1)-an)=
已知数列{log2(an-1)}(n属于n*)为等差数列且a1=3,a2=5,则1/(a2-a1)+1/(a3-a2)+……+1/(a(n+1)-an)=
已知数列{log2(an-1)}(n属于n*)为等差数列且a1=3,a2=5,则1/(a2-a1)+1/(a3-a2)+……+1/(a(n+1)-an)=
数列{log2(an-1)}(n属于n*)为等差数列,a1=3,a2=5,
首项log2(a1-1)=1,公差d=log2(a2-1)-log2(a1-1)=2-1=1,
通项公式log2(an-1)=log2(a1-1)+(n-1)*d=n,
所以an-1=2^n,则an=2^n+1
所以a(n+1)-an=[2^(n+1)+1]-[2^n+1]=2^n
则1/(a2-a1)+1/(a3-a2)+……+1/(a(n+1)-an)=1/2+1/2^2+1/2^3+……+2^n(等比数列)
=(1/2)*[1-(1/2)^n]/(1-1/2)=1-(1/2)^n
设Bn=log2(An-1)
B1=log2(A1-1)
B2=log2(A2-1)
因为Bn是等差数列,所以B2-B1=d (公差)
将a1=3,a2=5带入可以得出 D=1
即Bn是以B1=1,D=1的等差数列得出Bn=n
Bn=log2(An-1)=n
An-1=2^n
An=2^n+1 代入后得:
...
全部展开
设Bn=log2(An-1)
B1=log2(A1-1)
B2=log2(A2-1)
因为Bn是等差数列,所以B2-B1=d (公差)
将a1=3,a2=5带入可以得出 D=1
即Bn是以B1=1,D=1的等差数列得出Bn=n
Bn=log2(An-1)=n
An-1=2^n
An=2^n+1 代入后得:
1/(a2-a1)+1/(a3-a2)+……+1/(a(n+1)-an)
=1/(2^2-2^1)+1/(2^3-2^2)+.......+1/((2^n+1)-2^n)
=1/2+1/2^2+.......+1/2^n
=1-1/2^n
收起
log2(A1-1)=1
log2(A3-1)=3
2d=3-1=2
d=1
log2(An-1)=1+1(n-1)=n
An-1=2^n
An=2^n+1
A(n+1)-An=2^(n+1)+1-2^n-1=2^(n+1)-2^n=2^n(2-1)=2^n
则1/a2-a1+1/a3-a2.+.....+1/an+1-an=1/2^...
全部展开
log2(A1-1)=1
log2(A3-1)=3
2d=3-1=2
d=1
log2(An-1)=1+1(n-1)=n
An-1=2^n
An=2^n+1
A(n+1)-An=2^(n+1)+1-2^n-1=2^(n+1)-2^n=2^n(2-1)=2^n
则1/a2-a1+1/a3-a2.+.....+1/an+1-an=1/2^1+1/2^2+……+1/2^n=1-1/2^n(用等比数列求和公式)
上面的回答明显错了么,A1=3=2+1 如果An=2^n-1的话,2-1=3?
收起
1-(1/2)^n