已知双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左右焦点分别为F1、F2,P是准线上的一点,且PF1⊥PF2,(接着题目)|PF1|*|PF2|=4ab,则双曲线的离心率为_______.既然准线与X轴交于C点,那么PC肯定不垂直于F1F2 所以第

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 01:45:11
已知双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左右焦点分别为F1、F2,P是准线上的一点,且PF1⊥PF2,(接着题目)|PF1|*|PF2|=4ab,则双曲线的离心率为_______.既然准线与X轴交于C点,那么PC肯定不垂直于F1F2 所以第
xR=o@+udRfLFŊ"*"y0&j*u %i Q-MS_;3/]BX|<U\Zgtxk9:$,*YiF.dֺ4"tX]81NC)8}kWNtgI!mzdPSP[Nhܾ6z*Mk?桒'~ĂxQc}Wmр8%#MR*JVu ߖ#>HjNI#;O]j4?6$&yo'fMf!qHSrA$ 0lܫY̙gVa>8`SĬmꏅtԔ5˒*.h,ά%ISDa-Č8.0EcL,@ynIvg,%Q\\bf!0zt6h7K3h"ϐY7ԍd+

已知双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左右焦点分别为F1、F2,P是准线上的一点,且PF1⊥PF2,(接着题目)|PF1|*|PF2|=4ab,则双曲线的离心率为_______.既然准线与X轴交于C点,那么PC肯定不垂直于F1F2 所以第
已知双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左右焦点分别为F1、F2,P是准线上的一点,且PF1⊥PF2,
(接着题目)|PF1|*|PF2|=4ab,则双曲线的离心率为_______.
既然准线与X轴交于C点,那么PC肯定不垂直于F1F2 所以第三行有问题。

已知双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左右焦点分别为F1、F2,P是准线上的一点,且PF1⊥PF2,(接着题目)|PF1|*|PF2|=4ab,则双曲线的离心率为_______.既然准线与X轴交于C点,那么PC肯定不垂直于F1F2 所以第
设准线与x轴交于C点,
PF1⊥PF2,
直角三角形PF1F2的面积=1/2*|PF1|*|PF2|=1/2*|F1F2|*|PC|
而|PF1|*|PF2|=4ab
所以2ab=c*|PC|,|PC|=2ab/c
在直角三角形PF1F2中,|CF2|*|CF1|=|PC|²
即:(c-a^2/c)(c+a^2/c)= 4(ab)^2/c^2,
4(ab)^2/c^2=(c^4-a^4)/c^2,
4a^2*b^2=c^4-a^4,
∵b^2=c^2-a^2,
∴4a^2(c^2-a^2)=c^4-a^4
c^4-4a^2c^2+3a^4=0
(c^2-3a^2)(c^2-a^2)=0
因为c>a,
所以c=√3a,
离心率e=c/a=√3.

已知双曲线x^2/a^2-y^2/b^2=1(a>0b 已知双曲线a^2|x^2-b^2|y^2=1(a>0,b 已知双曲线x^2/a^2-y^2/b^2与直线y=2x有焦点,则双曲线的离心率的取值范围是 已知双曲线x^2/a^2-y^2/b^2=1的一条渐近线方程为y=4/3x,则双曲线的离心率为? 已知双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)和椭圆x^2/16+y^2/9有相同的焦点,双曲线的离心率是椭圆的两倍,求双曲线的方程 已知抛物线y^=4x焦点F恰好是双曲线x^/a^-y^/b^=1的右焦点,且双曲线过点(3a^/2,b)则该双曲线的渐近线方程为 已知双曲线x^2/a^2—y^2/ b^2 =1(a>b>0)和圆O:x^2+y^2=b^2(其中原点O为圆心),过双曲线C上一点P(X.,Y.) 已知双曲线x^2/a^2-y^2/b^2的半焦距为c若b^2-4ac 已知双曲线x*/a*-y*/b*=1(a>根号2)的两条渐近线的夹角为60°,则双曲线的离心率为多少 如图,已知平行四边形ABOC,A(1,1)B(3,-2),点C在双曲线y=k/x (x 已知双曲线(X^2)/4-(Y^2)/5=1 ,直线l与双曲线渐近线交于AB两点,与双曲线的两支分别交于CD两点已知双曲线(X^2)/4-(Y^2)/5=1 ,直线l与双曲线渐近线交于A、B两点,与双曲线的两支分别交于C、D两点,求证 已知双曲线x^2/a^2-y^2/b^2=1的一个焦点与抛物线y^2=4x的焦点重合,且双曲线的离心率等于√5,求双曲线方程 已知双曲线x^2/a^2-y^2/b^2=1的一个焦点与抛物线y^2=4x的焦点重合,且双曲线的离心率等于√5,求双曲线方程【要过程】 已知双曲线X^2/a^2 - y^2/b^2=1的实轴长为2,焦距为4则该双曲线的渐近线方程是 【高中数学】已知双曲线x^2/a^2 - y^2/b^2 = 1(a>0,b>0)的离心率为根号6/2,则双曲线的渐近线方程为?已知双曲线x^2/a^2 - y^2/b^2 = 1(a>0,b>0)的离心率为根号6/2,则双曲线的渐近线方程为? 已知双曲线的一个焦点坐标F1(0,-13),双曲线上一点P到两焦点距离之差的绝对值为24,求双曲线方程已知圆x^2+y^2-4x-9=0与Y轴的两个交点A,B都在双曲线上,且A,B两点恰好把此双曲线两焦点间线段三等 已知双曲线x^2-y^2/3=1 过原点的直线L交双曲线于A B两点 求|AB|最小值 已知双曲线x^2-y^2/3=1 过原点的直线L交双曲线于A B两点 求|AB|最小值