小学数学抽屉原理

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 18:58:56
小学数学抽屉原理
xXR~_A\v+Uٜn^䜿[R/ 66-|!,l wI4#pcaMULOwO_xD%T "_W?oxFbjY߭x̫7^oŽq쉨(v?M'^1DwKb?OϽv'nKlq 4Dn[ui-U}+E}[B?E{7X,(€4]^B;V c2Hc 7vGߜ}jFt-qa~XmsKڏI:aU$AD9CmMww|ʓQxծεߝEcVN"2Ci2Ȉm*NɕBlp P;xɿC0JsYq!{K~{S0|:tTEqH(UϹ(;'z ii&3|Iw$EAgE1GIuY"^A>QvE(\6U8q ^zy4]d2~/~<76U4Oٮ(f԰Ёv@ 'j<;uMai?tu#PC$k-, 43lsCh?}gna4V aPb doEe>oO[8~3Mñgߊ#F ij, h0 I Rdb2%| Wn^;SZ]-E$84cba$\4f_BTk!]2Je3 s)?F~U Fz#UͲNԹsfc23 h`HՔTaWAd3Ną`>d aXt^9KrFX@,i"ח2]7 㷦z]?3Q5ʤøsg.j>ȓ`ɐð&h.y-uŸPb!Vd`.`!HR[>.H^< <Du-5q1a]iC)9'T)RHtqKf ?- r7_Ni4|O[S$ElU;ּ6+@X`zH%u0 շr+!W<3ѨE {¿D&P,`0@GYկRr1Cx06O2 e_(Kq3!"dh^u` h܏YKCHoo'O{!23{Wpӫ۹E*Րpfwb'* ya^YBv 0F4$r-5CfVi  ?` ݨ@Tfu,s$d[jHh&+1MD>ח }|G>T329yZTND7ЙyxM?D@

小学数学抽屉原理
小学数学抽屉原理

小学数学抽屉原理
抽屉原理
一、 知识要点
抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理.
把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果.这个人所皆知的常识就是抽屉原理在日常生活中的体现.用它可以解决一些相当复杂甚至无从下手的问题.
原理1:把n+1个元素分成n类,不管怎么分,则一定有一类中有2个或2个以上的元素.
原理2:把m个元素任意放入n(n<m=个集合,则一定有一个集合呈至少要有k个元素.
其中 k= (当n能整除m时)
〔 〕+1 (当n不能整除m时)
(〔 〕表示不大于 的最大整数,即 的整数部分)
原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素.
二、 应用抽屉原理解题的步骤
第一步:分析题意.分清什么是“东西”,什么是“抽屉”,也就是什么作“东西”,什么可作“抽屉”.
第二步:制造抽屉.这个是关键的一步,这一步就是如何设计抽屉.根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路.
第三步:运用抽屉原理.观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决.
例1、 教室里有5名学生正在做作业,今天只有数学、英语、语文、地理四科作业
求证:这5名学生中,至少有两个人在做同一科作业.
证明:将5名学生看作5个苹果
将数学、英语、语文、地理作业各看成一个抽屉,共4个抽屉
由抽屉原理1,一定存在一个抽屉,在这个抽屉里至少有2个苹果.
即至少有两名学生在做同一科的作业.
例2、 木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?
把3种颜色看作3个抽屉
若要符合题意,则小球的数目必须大于3
大于3的最小数字是4
故至少取出4个小球才能符合要求
答:最少要取出4个球.
例3、 班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书.
把50名学生看作50个抽屉,把书看成苹果
根据原理1,书的数目要比学生的人数多
即书至少需要50+1=51本
答:最少需要51本.
例4、 在一条长100米的小路一旁植树101棵,不管怎样种,总有两棵树的距离不超过1米.
把这条小路分成每段1米长,共100段
每段看作是一个抽屉,共100个抽屉,把101棵树看作是101个苹果
于是101个苹果放入100个抽屉中,至少有一个抽屉中有两个苹果
即至少有一段有两棵或两棵以上的树
例5、 11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本
试证明:必有两个学生所借的书的类型相同
证明:若学生只借一本书,则不同的类型有A、B、C、D四种
若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种
共有10种类型
把这10种类型看作10个“抽屉”
把11个学生看作11个“苹果”
如果谁借哪种类型的书,就进入哪个抽屉
由抽屉原理,至少有两个学生,他们所借的书的类型相同
例6、 有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜
试证明:一定有两个运动员积分相同
证明:设每胜一局得一分
由于没有平局,也没有全胜,则得分情况只有1、2、3……49,只有49种可能
以这49种可能得分的情况为49个抽屉
现有50名运动员得分
则一定有两名运动员得分相同
例7、 体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?
解题关键:利用抽屉原理2.
根据规定,多有同学拿球的配组方式共有以下9种:
{足}{排}{蓝}{足足}{排排}{蓝蓝}{足排}{足蓝}{排蓝}
以这9种配组方式制造9个抽屉
将这50个同学看作苹果
=5.5……5
由抽屉原理2k=〔 〕+1可得,至少有6人,他们所拿的球类是完全一致的