求微分:①f(x)=tanx/2②f(x)=(x+3)/sinx③

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 16:58:23
求微分:①f(x)=tanx/2②f(x)=(x+3)/sinx③
x){uO;h4 Mےļ }Gyƚřy&.I*'Y~ y6=تRnk_lhna]ؒaHtUUg 6:<E jB @Vjm){0Q_$gd_\g cvn XU@  /SV<]%6O}>}ﳩ 9 d(

求微分:①f(x)=tanx/2②f(x)=(x+3)/sinx③
求微分:①f(x)=tanx/2②f(x)=(x+3)/sinx③

求微分:①f(x)=tanx/2②f(x)=(x+3)/sinx③
①∵(tanx)'=1/cos²x
∴f′(x)=1/2 ×1/[(cosx)^2]=1/[2×(cosx)^2]
②f′(x)=【sinx+(x+3)cosx】/(sinx)^2

1 df(x)=d(sinx/2/cosx/2)=1/2(cosx)^2dx
用好除法的求导公式就行了啊。。。
或者变成乘法用复合函数求导